We currently make around 1 TW of photovoltaic cells per year, globally. The proposal here is to launch that much to space every 9 hours, complete with attached computers, continuously, from the moon.
edit: Also, this would capture a very trivial percentage of the Sun's power. A few trillionths per year.
Even with their cheapest home plan, we're getting like 100 Mbps down and maybe 20 to 50 up. So it's just not true at all that you would have connections that are a megabit or two per second.
You also don't usually use the same exact kind of panels as terrestrial solar farms. Since you are going to space, you spend the extra money to get the highest possible efficiency in terms of W/kg. Terrestrial usually optimizes for W/$ nameplate capacity LCOE, which also includes installation and other costs.
Except it doesn't melt like regular hail so when further storms come up you could end being hit by the same hail more than once :\
However, the amount of available land is fixed and the demand for its use is growing. Solar isn't the only buyer in this real estate market.
Availability of land for solar production isn't remotely a real problem in the near term.
And then there’s that pesky night time and those annoying seasons.
It’s still not even remotely reasonable, but it’s definitely much higher in space.
https://wiki.pvmet.org/index.php?title=Standard_Test_Conditi...
So, a "400W panel" is rated to produce 400W at standard testing conditions.
I'm not sure how relevant that is to the numbers being thrown around in this thread, but thought I'd provide context.
>just use even more solar panels
I think it's because at this scale a significant limit becomes the global production capacity for solar cells, and SpaceX is in the business of cheaper satellites and launch.China made 1.8 TW of solar cells in 2025.
The raw materials required to make these are incredibly abundant, we make as much as we need.
https://inhabitat.com/worlds-largest-solar-project-sahara-de...
https://www.theguardian.com/business/2009/nov/01/solar-power...
(and a retrospective from 2023 - https://www.ecomena.org/desertec/ )
The two options there are cluttering up the dawn dusk polar orbit more or going to high earth orbit so that you stay out of the shadow of the earth... and geostationary orbits are also in rather high demand.
Which satellites are operating from "deep space"?
It's still the same 1TW theoretical peak in space, it's just that you can actually use close to that full capacity all the time, whereas on earth you'd need to over-provision substantially and add storage, so 1TW of panels can only drive perhaps a few hundred GW of average load.
Orbit gets you the advantage of 1/5th the PV and no large daily smoothing battery, but also no on-site installation cost, no grid interconnect fees, no custom engineering drawings, no environmental permitting fees, no grid of concrete footers, no heavy steel frames to resist wind and snow loads. The "on-site installation" is just the panels unfolding, and during launch they're compact so the support structure can be relatively lightweight.
When you cost building the datacenter alone, it's cheaper on earth. When you cost building the solar + batteries + datacenter, it (can be) cheaper in space, if you build it right and have cheap orbital launch.
Finally, if we limited ourselves to earth-based raw materials, we would eventually reach a point where the remaining mass of the earth would have less gravitational effect on the satellite fleet than the fleet itself, which would have deleterious effects on the satellite fleet.
Seven reasons are intuitive; I’m sure there are many others.
And the robot army being used to do the construction and resource extraction will likely have a much shorter lifespan. So needs to be self-replicating/repairing/recycling.
> What do you think the limiting factor is?
You need to be able to harness enough raw material and energy to build something that can surround the sun. That does not exist in the solar system and we do not yet have the means to travel further out to collect, move, and construct such an incredibly huge structure. It seems like a fantasy.
It is similar to the biological tradeoff of having a few offspring and investing heavily in their safety and growth vs having thousands off offspring and investing nothing in their safety and growth.
Full paragraph quote comes from:
> While launching AI satellites from Earth is the immediate focus, Starship’s capabilities will also enable operations on other worlds. Thanks to advancements like in-space propellant transfer, Starship will be capable of landing massive amounts of cargo on the Moon. Once there, it will be possible to establish a permanent presence for scientific and manufacturing pursuits. Factories on the Moon can take advantage of lunar resources to manufacture satellites and deploy them further into space. By using an electromagnetic mass driver and lunar manufacturing, it is possible to put 500 to 1000 TW/year of AI satellites into deep space, meaningfully ascend the Kardashev scale and harness a non-trivial percentage of the Sun’s power. >
We can make ten or hundred times the number of solar cells we make right now, we just don't have a reason to. The technology is fairly ancient unless you want to compete on efficiency, and the raw materials abundant.
Humanity has a finite (and too small) capacity for building solar panels. AI requires lots of power already. So the question is, do you want AI to consume X (where X is a pretty big chunk of the pie), or five times X, from that total supply?
Using less PV is great, but only if the total cost ends up cheaper than installing 5X the capacity as terrestrial PV farms, along with daily smoothing batteries.
SpaceX is only skating to where they predict the cost puck will be.
You don't build a rigid shell of course, you build a swarm of free-floating satellites in a range of orbits.
See https://www.aleph.se/Nada/dysonFAQ.html#ENOUGH for numbers.
Well, what happens over the course of a year of night and clouds is that 1 TW-peak becomes an average of about 110 to 160 GW.
We're making ~1 TW-peak per year of PV right now.
Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?
This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.
There is plenty of material in the solar system (see my other response), and plenty of orbits, and launch capability can scale with energy harvested so the launch rate can grow exponentially.
Lots of people will probably decide they don't want any more satellites. But it only takes a few highly determined people to get it done anyway.
These people are legit insane.
In the meantime, how about affordable insulin for everybody?
>We can make ten or hundred times the number of solar cells we make right now
Tomorrow?The limit isn't just about the current capacity or the maximum theoretical capacity, it's also about the maximum speed you can ramp.
But yeah, I didn't include that delivering all that stuff by truck (including all the personnel) to a terrestrial PV site isn't free either.
Not just for startups either. If you ramp up the Polio vaccine in 1 year vs 10 years, that has a big impact on human wellbeing. The two scenarios are not equivalent outcomes, even though it still happens "eventually."
Speed matters.
Also, he literally said it was a joke, and was miffed that he was best know for something he didn't take seriously.
Datacenters in space are a TERRIBLE idea.
Figure out how to get rid of the waste heat and get back to me.
The Earth's crust has an average thickness of about 15-20 km. Practically we can only get at maybe the top 1-2 km, as drill bits start to fail the deeper you go.
The Earth's radius is 6,371 km.
So even if we could somehow dug up entire crust we can get to and flung it into orbit, that would barely be noticeable to anything in orbit.
building them on earth and then shipping them up?
We’re not exactly at a loss for land over here.
The moon mfg makes significantly more sense than the hilarious plan to establish a permanent Mars base in the next 50 years, but that's not saying much.
Or let me guess, its going to be profitable to mine crypto in space (thereby solving the problem of transporting the "work" back to earth)
From lunar regolith you would extract: oxygen, iron, aluminum, titanium, silicon, calcium, and magnesium.
From the poles you can get fuel (water ice -> water + hydrogen + oxygen).
The real constraint is not materials, but rather power generation, automation reliability, and initial capital investment.
So you have to shuttle machines, energy systems, and electronics.
The moon can supply mass, oxygen, fuel, and structure.
Satellites that would benefit most are: huge comms platforms, space-based power satellites, large radar arrays, deep-space telescopes, etc.
In situ manufacturing. You just have to send enough to build the thing that builds the factory.
Do tell.
Do we actually know how to do that?
>From the poles
From the poles! So the proposal includes building a planetary-scale railway network on bumpy lunar terrain.
>The moon can supply mass, oxygen, fuel, and structure.
None of those are things we are hurting for down here, though.
The manufacturing scale comes from designing factory factories. They aren't that far in the future. Most factory machinery is made in factories which could be entirely automated, so you just need some robots to install machines into factories.
Developing new technology happens to matter more.
I'm sure investors are going to do their own analysis on this and reach their own conclusions, you should try betting against it.
Doubling every three years; at that rate it would take about 30 years for 1TW to become 1000TW. Whether on not the trend continues largely depends on demand, but as of right now humanity seems to have an insatiable demand for power.
That would suck to do to Earth, but we can launch all of Mars's mass into the swarm.
The idea itself may be sound, though that's unrelated to the question of whether Elon Musk can be relied on to be honest with investors about what their real failure projections and cost estimates are and whether it actually makes financial sense to do this now or in the near future.
Besides making PV much more consistent, the main thing this seems to avoid is just the red tape around developing at huge scale, and basically being totally sovereign, which seems like it might be more important as tensions around this stuff ramp up. There’s clearly a backlash brewing against terrestrial data centers driving up utility bills, at least on the East Coast of the US.
The more I think about it, the more this seems like maybe not a terrible idea.
But I think there's solutions to the waste heat issue
https://www.nasa.gov/centers-and-facilities/goddard/engineer...
To be fair, he later added this:
>in a later interview with students from The University of Edinburgh in 2018, he referred to the premise of the Dyson sphere as being "correct and uncontroversial".[13] In other interviews, while lamenting the naming of the object, Dyson commented that "the idea was a good one", and referred to his contribution to a paper on disassembling planets as a means of constructing one.
Sources are in: https://en.wikipedia.org/wiki/Dyson_sphere
That's how that argument sounds like, particularly when you hear it from someone who is as broke as it can be.
It's easy to type those ideas in a comment, or a novel, or a scientific paper ... bring them to reality, oh surprise! that's the hard part.
1: The dumb version to invest
One of the things space has going for it is abundant cheap energy in the form of solar power. What can you do with megawatts of power in space though? What would you do with it? People have thought about beaming it back to Earth, but you'd take a big efficiency hit.
AI training needs lots of power, and it's not latency sensitive. That makes it a good candidate for space-based compute.
I'm willing to believe it's the best low-hanging fruit at the moment. You don't need any major technological advances to build a proof-of-concept. Whether it's possible for this to work well enough that it's actually cheaper than an equivalent terrestrial datacenter now or in the near future is something I can't answer.
I can't get in detail about real numbers but it's not doable with current hardware by a large margin.
It's not so much a matter of whether it's an unsolvable problem but more like, how expensive is it to solve this problem, what are its limitations, and does the project still makes economic sense once you factor all that in?
Because these platforms are experimental and rapidly evolving, they aren't 'space-ready.' Space-grade hardware must be 'rad-hardened' and proven over years of testing.
By the time an accelerator is reliable enough for orbit, it’s several generations obsolete, making it nearly impossible to compete or turn a profit against ground-based clusters.
For many on HN, Elon buying Twitter was a wake up call because he suddenly started talking about software and servers and data centers and reliability and a ton of people with experience with those things were like "oh... this guy's an idiot".
Data centers in space are exactly like this. Your comment (correctly) alludes to this.
Companies like Google, Meta, Amazon and Microsoft all have so many servers that parts are failing constantly. They fail so often on large scales that it's expected things like a hard drive will fail while a single job might be running.
So all of these companies build systems to detect failures, disable running on that node until it's fixed, alerting someone to what the problem is and then bringing the node back online once the problem it's addressed. Everything will fail. Hard drives, RAM, CPUs, GPUs, SSDs, power supplies, fans, NICs, cables, etc.
So all data centers will have a number of technicians who are constantly fixing problems. IIRC Google's ratio tended to be about 10,000 servers per technician. Good technicians could handle higher ratios. When a node goes offline it's not clear why. Techs would take known good parts and basically replacce all of them and then figure out what the problem is later, dispose of any bad parts and put tested good parts into the pool of known good parts for a later incident.
Data centers in space lose all of this ability. So if you have a large number of orbital servers, they're going to be failing constantly with no ability to fix them. You can really only deorbit them and replace them and that gets real expensive.
Electronics and chips on satellites also aren't consumer grade. They're not even enterprise grade. They're orders of magnitude more reliable than that because they have to deal with error correction terrestial components don't due to cosmic rays and the solar wind. That's why they're a fraction of the power of something you can buy from Amazon but they cost 1000x as much. Because they need to last years and not fail, something no home computer or data center server has to deal with.
Put it this way, a hardened satellite or probe CPU is like paying $1 million for a Raspberry Pi.
And anybody who has dealt with data centers knows this.
Main physics problem is actually that the math works better at higher GPU temps for efficiency reasons and that might have reliability trade off.
I know being right without responsibility feels amazing but results are a brutal filter.
Beyond that, we don't actually know the failure rate of the Tesla fleet. I’ve never had a personal computer fail from use in my life, but that’s just anecdotal and holds no weight against the law of large numbers. When you operate at the scale of a massive cluster, "one-in-a-million" failures become a daily statistical certainty.
Claiming that because you don't personally see cars failing on the side of the road means they require zero intervention actually proves my original point: people who haven't managed data center reliability underestimate the sheer volume of "rare" failures that occur at scale.
I'm not a data center technician myself, but I have deep respect for those folks and the complexity they manage. It's quite surprising the market still buys Musk's claims day after day.
You've got to hand it to him, he is a bullshitter par excellence.
It's scifi nonsense for no purpose other than to sound cool.
For what it's worth, this project plans to use Tesla AI5/AI6 hardware for the first launches.
That is together less than a single AI inference rack.
And to achieve that the EACTS needs 6 radiator ORUs each spanning 23 meters by 11 meters and with a mass of 1100 kg. So that's 1500 square meters and 6 and a half metric tons before you factor in any of the actual refrigerant, pumps, support beams, valve assemblies, rotary joints, or cold side heat exchangers all of which will probably together double the mass you need to put in orbit.
There is no situation where that makes sense.
-----------
Manufacturing in space makes sense (all kinds of techniques are theoretically easier in zero G and hard vacuum).
Mining asteroids, etc makes sense.
Datacenters in space for people on earth? That's just stupid.
Like on the order of tens or hundreds of watts but -100C.
Dissipating heat for an AI datacenter is a different game. A single AI inference or training rack is going to be putting out somewhere around 100kW of waste heat. Temps don't have to be cryogenic but it's the difference between chiselling a marble or jade statue and excavating a quarry.
You do - cooling those datacenters in space is an unsolved problem.
How do the racks (or nodes) talk to eachother? Radios? Lasers?
What about the Kessler Syndrome?
Not a rocket scientist but 100% agree this sounds like a dead end.
And that’s from a fascist who barely managed to dig ONE small one lane tunnel under Las Vegas and called it a revolution.
I’m sorry to be rude but people who are still giving musk any credit are stupid at this point.
Oh boy, IA data centers in space. It’s not only ridiculous, but it’s also boring and not even exciting at all.
The basic math is that launching a million tons per year of satellites generating 100 kW of compute power per ton would add 100 gigawatts of AI compute capacity annually, *with no ongoing operational or maintenance needs*.
I'm deeply disillusioned to arrive at this conclusion but the Occam's Razor in me feels this whole acquisition is more likely a play to increase the perceptual value of SpaceX before a planned IPO.That said: I think solar is niche, and a moon-shot for how they want it. Nuclear is the future of reliable energy for human civilization.
I think the K-scale is the wrong metric. I don't think we should be trying to take all the sun's energy as a goal (don't blot out the sun! don't hide it in a bushel!), or as a civilizational utiltiy - I'm sure better power supplies will come along.
Getting better at creating and erecting solar panels & AI datacenters on earth is all well and good, but it doesn't advance SpaceX or humanity very much. At lot of the bottlenecks there are around moving physical mass and paperwork.
Whereas combining SpaceX & xAI together means the margins for AI are used to force the economies of scale which drives the manufacturing efficiencies needed to drive down launch etc.
Which opens up new markets like Mars etc.
It is also pushing their competitive advantage. It leaves a massive moat which makes it very hard for competitors. If xAI ends up with a lower cost of capital (big if - like Amazon this might take 20 years horizon to realize) but it would give them a massive moat to be vertically integrated. OpenAI and others would be priced out.
If xAI wants to double AI capacity then it's a purely an automation of manufacturing problem which plays to Elons strengths (Tesla & automation). For anyone on earth doubling capacity means working with electricity restrictions, licensing, bureaucracy, etc. For example all turbines needed for electricity plants are sold years in advance. You can't get a new thermal plant built & online within 5 years even if you had infinite money as turbines are highly complex and just not available.
1. the latency is going to be insane.
2. AI video exists.
3. vLLMa exist and take video and images as input.
4. When a new model checkpoint needs to go up, are we supposed to wait months for it to transfer?
5. A one million token context window is ~4MB. That's a few milliseconds terrestrially. Assuming zero packet loss, that's many seconds
6. You're not using TCP for this because the round trip time is so high. So you can't cancel any jobs if a user disconnects.
7. How do you scale this? How many megabits has anyone actually ever successfully sent per second over the distances in question? We literally don't know how to get a data center worth of throughput to something not in our orbit, let alone more than double digit megabits per second.
I'd be curious where exactly they plan to put these datacenters... In low Earth orbit they would eventually reenter, which makes them a pollution source and you'd have no solar power half the time.
Parking them at the Earth-Sun L1 point would be better for solar power, but it would be more expensive to get stuff there.
The stock moves based on the same promise that's already unchecked without this new "in space" suffix:
We'll build datacenters using money we don't have yet, fill them with GPUs we haven't secured or even sourced, power them with infrastructure that can't be built in the promised time, and profit on their inference time over an ever-increasing (on paper) lifespan.
On the contrary, data centers continue to pop up deploying thousands of GPUs specifically because the numbers work out.
The H100 launched at $30k GPU and rented for $2.50/hr. It's been 3 years since launch, the rent price is still around $2.50.
During these 3 years, it has brought in $65k in revenue.
The satellite deorbits and you launch the next one.
It's solvents, lubricants, cooling, and all the other boring industrial components and feedstocks that people seem to forget exist. Just because raw materials exist in lunar regolith doesn't mean much if you can't actually smelt and refine it into useful forms.
Those interesting things won't pump up the perceived value of Musk companies to stratospheric levels - or dare I say - to the moon. He needs the public to believe that to earn the trillion-dollar package from the Tesla-Twitter-SpaceX conglomerate, even if the latter turns out to be the only profitable arm of the conglomerate.
I honestly don't know the answer. I know there's some efficiency loss running over long wires too but I don't know what's more realistic.
1. quite good at making solar cells
2. quite motivated to increase their energy production via solar
> ... we'd need a system 12.5 times bigger, i.e., roughly 531 square metres, or about 2.6 times the size of the relevant solar array. This is now going to be a very large satellite, dwarfing the ISS in area, all for the equivalent of three standard server racks on Earth.
https://taranis.ie/datacenters-in-space-are-a-terrible-horri...
The gist of it is that about 99% of cooling on earth works by cold air molecules (or water) bumping into hot ones, and transferring heat. There's no air in space, so you need a radiator 99x larger than you would down here. That adds up real fast.
Oh wait, that didn’t actually happen, because he got distracted or something? He doesn’t really have battery capacity worth writing home about, the Chinese are surpassing Tesla in EV manufacturing, and Waymo is far ahead in self-driving.
The amazing space computation cost reduction process sounds rather more challenging than the Model 2, and I’m not sure why anyone should bet on Elon pulling it off.
The tale of computers is even more absurd. The first programmable, electric, and general-purpose digital computer was ENIAC. [1] It was built to... calculate artillery firing tables. I expect in the future that the idea of putting a bunch of solar into space to run GPUs for LLMs will probably seem, at the minimum - quaint, but that doesn't mean the story ends there.
> correct and uncontraversial
From the original quote it is clear he was referring to the idea of aliens being detectable by infrared because they will absorb all of their sun's energy. Later in the same paragraph he says:
> Unfortunately I went on to speculate about possible ways of building a shell, for example by using the mass of Jupiter... > These remarks about building a shell were only order-of-magnitude estimates, but were misunderstood by journalists and science-fiction writers as describing real objects. The essential idea of an advanced civilization emitting infrared radiation was already published by Olaf Stapledon in his science fiction novel Star Maker in 1937.
So the Dyson Sphere is a rhetorical vehicle to make an order-of-magnitude estimate, not a description of a thing that he thought could physically exist.
Full quote from the video cited before "the idea was a good one":
> science fiction writers got hold of this phrase and imagined it then to be a spherical rigid object. And the aliens would be living on some kind of artificial shell. a rigid structure surrounding a star. which wasn't exactly what I had in mind, but then in any case, that's become then a favorite object of science fiction writers. They call it the Dyson sphere, which was a name I don't altogether approve of, but anyway, I mean that's I'm stuck with it. But the idea was a good one.
Again he explicitly says this "wasn't exactly what I had in mind." This one hedges a bit more and could be interpreted as his saying the idea of a Dyson Sphere is a good one. He may have meant that in the sense of it being a good science fiction idea though, and he subsequently goes on to talk about that.
The Dyson Sphere is good for order-of-magnitude calculations about hypothetical aliens, and also for selling vapourware to the types of people who uncritically think that vapourware is real.
I would be more shocked that we eliminated war than if we achieved this version of Elon's future.
It makes sense to think that we will continue to make scientific progress through war and self defense.
Reason being, nothing is more motivating than wanting to survive
The thing is, everyone knows Elon is not a real CEO of any of these companies. There isn’t enough time to even be the CEO of one company and a parent. This guy has 10 companies and 10 children. He’s just holding the position and preventing others from being in that position, so he can enact changes like this. And his boards are all stacked with family members, close friends, and sycophants who won’t oppose his agenda.
Average life of starlink satellite is around 4-5 years
Many, many network protocols were developed and used.
We have increased the manufacturing of pretty much every piece of technology you see in front you by 200x at some point in history. Often in a matter of years.
Compute power has increased more than 1000x while the cost came down.
I recall paying $3000 for my first IBM PC.
> they need to last years and not fail
Not if they are cheap enough to build and launch. Quantity has a quality all its own.
Making only 1TW of pv cells per year is a skill issue.
A solar+battery setup is already cheaper than a new gas plant. Beaming power from space is absolutely asinine, quite frankly. The losses are absurd, the sun already does it 24/7, and we know how to make wires and batteries to shuffle the sun's power around however we need to. Why on earth would we involve satellites?
Maybe just maybe the guy does actually get things done, and if you didn't hate him you'd see that?
(yes, there are some things he hasn't gotten done. That doesn't take away from what he has gotten done)
LOL, this seems so far off from the reality of what manufacturing looks like in reality. - sending raw materials up there - service technicians are necessary ALL THE TIME, in fully automated production lines - sending stuff back down
Maybe I lack vision, but data centers in space is a 1000x times better idea and that is already a terrible idea.
There's another scenario, though: one where the head of your company is a bull in a China shop, whose successes have come almost exclusively through a Barnum-esque scheme of cascading bravado and marketing genius without much expertise, but a marvelous ability to sell any idea purely via unearned gravitas.
The former is less sexy: I've compiled loads of talented people, and we're going to solve very hard problems, even some that seem impossible.
The latter is very sexy: I'm a genius and we're going to accomplish the impossible in one year via sheer force of my grand will. And even if it doesn't actually happen, I'll sell you on the next vision.
You are assuming things need to run the same way in space, for instance you mentioned fans, you won't have any in space. You also won't have any air, dust, static, or any moving parts.
You are assuming the costs to launch to orbit are high, when the entire point of Spacex's latest ship is to bring the cost to launch so low that it is cheaper per ton than an airplane flight.
Maintenance would be nice but you are saying this like Elon Musk's company doesn't already manage the most powerful datacenters on the planet.
You have no clue what you are talking about regarding cosmic rays and solar wind, these will literally be solar powered and behind panels and shielding 100% of the time.
You could argue that it doesn't really count though because it was only turing complete in theory: "A Colossus computer was thus not a fully Turing complete machine. However, University of San Francisco professor Benjamin Wells has shown that if all ten Colossus machines made were rearranged in a specific cluster, then the entire set of computers could have simulated a universal Turing machine, and thus be Turing complete."
I bet much less than half of the hundreds of HN commenters here bother to read it. Many are clearly unfamiliar with its content.
I get that vacuum is a really good insulator, which is why we use it to insulate our drinks bottles. So disposing of the heat is a problem.
Can't we use it, though? Like, I dunno, to take a really stupid example: boil water and run a turbine with the waste heat? Convert some of it back to electricity?
We can't build an independent colony we can't live there any time soon. Arguably it may never make sense to live there.
you mean the network that has less capacity than a fibre pair per coverage area?
Tesla invested into the first Lotus roadster - and put that cash into the S then the X. Used that cash to build the worlds largest factories and make the 3 & Y which sold at enormous volumes - so large in fact that the S & X are now tiny single percentages of sales which is why Tesla is stopping manufacturing them now.
Tesla is one of the very few vehicle manufactures which makes a profit manufacturing vehicles. Tesla throws off cash which allows the flywheel to keep spinning.
Tesla is now operating fully autonomous rides. They've constantly proved their naysayers wrong at every turn in time. What the Chinese are doing in battery tech is irrelevant to US vehicles as they will never be allowed to sell in the US which is Teslas largest market.
The model 2 has the possibility of being profitable at insanely low purchase price which has the potential to completely disrupt the economics of US sales in such a way that legacy auto could well be bankrupt in 5-10 years. Who will be making Waymo's vehicles then?
Why do you feel this kneejerk reaction to defend Elon and his companies? You'll never be him. He doesn't care about you. He'd use you for reactor shielding for an uptick in Tesla share price without a second's hesitation. This is cultish behavior.
Do you have any idea who you're defending? I'll give you just one example. A right-wing influencer named Dom Lucre uploaded CSAM to Twitter, a video. But he didn't just upload it. He watermarked it first so had it on his computer and then postporcessed it. It was I believe up for days. This was apparently a video so bad that mere possession should land you in prison. And the fact that the FBI didn't arrest him basically tells you he'd an FBI asset. After taking days to ban him, Elon personally intervened to unban him. Why? Because reasons.
And this is the same man who it's becoming clear was deeply linked with Jeffrey Epstein, as was his brother [1].
Bringing this back to the original point: this is why Twitter lost 80% of its value after Elon acquired it. Advertisers fled because it became a shithole for CSAM and Nazis.
As for "basically no downtime" that's hilarious. I even found you commenting the classic anecdote "it was fine for me" (paraphrased) on one such incident when Twitter DDOSed itself [2].
Your cultish devotion here is pretty obvious eg [3]. I'm genuinely asking: what do you get out of all this?
[1]: https://www.axios.com/local/boulder/2026/02/02/kimbal-musk-j...
[2]: >>36555897
[3]: >>42836560
Late 1700 actually, and war was indeed a key motivation for the deployment of the Télégraphe Chappe.
But it's not trivial indeed, especially if you want good power density in your space data center.
I guess the trick lies in the operating temperature and the geometry of the satellites.
2. Farming didn't evolve from a vision of "let's stay in one place, so let's find a way to do it"; it evolved from the gradual application of accumulated practical knowledge under real constraints until eventually it was possible to stay in one place. If Paleoelon had somehow convinced early humanity to abandon hunter-gathering and settle into a sedentary life because he had a vision for new markets around farming it would have led to the earliest famine.
Automated asteroid mining, and asteroid harvesting, are potential areas where we have strong tech, a reasonable pure automation story, and huge financial upsides. Trillion dollar asteroids... If we’re sourcing metals out there, and producing for orbital operations or interplanetary shenanigans, the need for computing and automation up there emerges.
And I imagine for the billionaire investor class now is the window to make those kinds of plays. A whole set of galactic robber barons is gonna be crowned, and orbital automation is critical to deciding who that is.
Caveat: my understanding of this largely comes from the book The High Frontier, which is really old and probably inaccurate. I can't think of a reason why this particular point would be wrong though.
Then you have to also count the Z3 which predates the Colossus by 2 years.
Moving matter out continusously at industrial scale with no plan to bring 100% of it back in the ecosystem other than burning it seems quite unsustainable and irresponsable.
https://wikipedia.org/wiki/Golden_Dome_(missile_defense_syst...
Anyone with 2+ computers immediately thought about connecting them.
https://www.amazon.com/dp/162040592X
Télégraphe Chappe was a semaphore system using flags. It was not an electrical telegraph, nor was it binary.
The problem is essentially that everything you do releases waste heat, so you either reject it, or everything continues to heat up until something breaks. Developing useful work from that heat only helps if it helps reject it, but it's more efficient to reject it immediately.
A better, more direct way to think about this might be to look at the Seebeck effect. If you have a giant radiator, you could put a Peltier module between it and you GPU cooling loop and generate a little electricity, but that would necessarily also create some waste heat, so you're better off cooling the GPU directly.
Like this argument just gets absurd: you're claiming building a data center on earth will be harder from a permitting perspective than FAA flight approval for multiple heavy lift rocket launch and landing cycles.
Mining companies routinely open and close enormous surface area mines all over the world and manage permitting for that just fine.
There's plenty of land no one will care if your build anything on, and being remote with maybe poor access roads is still going to be enormously cheaper then launching a state of the art heavy lift rocket which doesn't actually exist yet.
IDK, what about the side-benefits of applying the "incredible engineering and technical capacity" to something useful instead? Rather than finding rationalisations for space spambots.
>Heat radiation works better the higher the temperature?
The power output is proportional to T^4 according to the Stefan-Boltzmann law.
Disclaimer: Not an Elon hater, but far from a sycophant, similar to how I felt about Steve Jobs for 40+ years.
(please don't ask what we do when those break down)
Still, dropping a pod into the sea makes more sense than launching it into space. At least cooling, power, connectivity and eventual maintenance is simpler.
The whole thing makes no sense and is seems like it's just Musk doing financial manipulation again.
https://news.microsoft.com/source/features/sustainability/pr...
I don't know where this delusion of "Servers in space" came from, I think of it as the new NFTs
But I bet those pushing for it are very interested in feeding the grift
oh, we'll sure find a way to weaponize that energy for example - just imagine all those panels simultaneously turning their reflective back in a way to form gigantic mirror to focus reflected solar energy on your enemy, be that enemy in space or on the Earth/Moon/Mars ground. Basically space-scale version of 'death ray scyscrapper' https://www.businessinsider.com/death-ray-skyscraper-is-wrea....
Back in the day the Star Wars program was intending to use nuclear explosions to power the lasers, i guess once all that solar for AI gets deployed in space we wouldn't need the explosions anymore.
Interesting that such space deployment can deny access to space to anybody else, and that means that any competitive superpower has to rush to deploy similar scale system of their own. Space race v2.
I think building and operating data center infrastructure is a high risk, low margin business.
(yes I fully agree with you!)
That's what asteroid mining is for.
>>service technicians are necessary ALL THE TIME
Optimus is already very well tele-operated. Even though over time it can likely be trained to do specific tasks far better than even humans.
However I'm curious how many solar panels you would need to power a typical data center. Are we talking something like a large satellite, or rather a huge satellite with ISS-size solar arrays bolted on? Getting rid of the copious amounts of heat that data centers generate might also be a challenge (https://en.wikipedia.org/wiki/Spacecraft_thermal_control)...
It's a fig leaf for getting two IPOs in one. There's no sense in analyzing it any further.
I think you might have no sense of what it takes to go from a raw mined material to something that can be used in a factory. I am not saying it cannot be done. I am just saying it cannot be done in a way that is cheaper than on earth.
But if completes the vision of ancestors who thought god living in the sky
So "Lord give me a sign from heavens" may obtain a whole new meaning
It’s just as real as the 25k Model 3.
For inferencing it can work well. One satellite could contain a handful of CPUs and do batch inferencing of even very large models, perhaps in the beginning at low speeds. Currently most AI workloads are interactive but I can't see that staying true for long, as things improve and they can be trusted to work independently for longer it makes more sense to just queue stuff up and not worry about exactly how high your TTFT is.
For training I don't see it today. In future maybe. But then, most AI workloads in future should be inferencing not training anyway.
at 70 Celsius - normal for GPU - 1.5m2 radiates something like 1KWt (which requires 4m2 of panels to collect), so doesn't look to a be an issue. (some look to ISS which is a bad example - the ISS needs 20 Celsius, and black body radiation is T^4)
Scaling photovoltaic production doesn't seem likely to have many broader implications on its own. At best, it makes it easier to change the grid to renewable power, if you ignore the intermittency problem that still exists even at huge scales. PV fabs aren't really reusable for other purposes though, and PV tech is pretty mature already, so it's not clear what scaling that up will do.
Scaling rocketry has several fascinating implications but Elon already covered many of them in his blog post.
Scaling AI - just read the HN front page every day ;)
What are we missing here? Some combinatoric thing?
The practical difficulties aren't really long distance transmission though. They're political and engineering. Spain had a massive blackout recently because a PV farm in the south west developed a timing glitch and they couldn't control the grid frequency - that nearly took out all of Europe and the power wasn't even being transmitted long distance! The level of trust you need to build a giant integrated continent-wide power grid is off the charts and it's not clear it's sustainable over the long run. E.g. the EU threatened to cut Britain's electricity supplies during Brexit as a negotiating tactic and that wasn't even war.
The justification (today) is that you can do very exotic things in zero-G that aren't possible on Earth. Growing ultra-pure crystals and fibre optics and similar.
However there are workarounds. People are talking like the only radiator design is the one on the ISS. There are other ways to build radiators. It's all about surface area. One way is to heat up a liquid and then spray it openly into space on a level trajectory towards a collecting dish. Because the liquid is now lots of tiny droplets the surface area is huge, so they can radiate a lot of heat. You don't need a large amount of material as long as you can scoop up the droplets the other end of the "pipe" and avoid wasting too much. Maybe small amounts of loss are OK if you have an automated space robot that goes around docking with them and topping them up again.
Not sure how you can say that. Nothing lasts forever, especially in the face of Chinese market dumping, but for a while there Tesla really was the undisputed king of EV manufacturing, that flywheel is how he got there, he did release all the patents because he said from day one he didn't anticipate or aim for 100% market share for Tesla and assumed there'd always be lots of EV manufacturers in future. All that sounds like - mission accomplished?
As for Waymo being ahead, maybe today. But Waymo's tech stack is largely pre-DL, they rely heavily on unscalable techniques like LIDAR and continuous mapping. Tesla is betting big on the "scale up neural networks" model we know works well and their FSD can drive everywhere. They're perhaps behind Waymo in some ways, but they're also in different markets - Waymo won't sell anyone a self driving car and Tesla will. I wouldn't count them out. Their trajectory is the right one.
> I’m not sure why anyone should bet on Elon pulling it off.
PayPal, SpaceX existing at all, then doing reusable rockets, Tesla, FSD, large scale battery manufacturing, Starlink, X ("he can't fire 80% of employees it'll crash immediately"), robotics, training a SOTA LLM so fast even Jensen Huang was shocked ... the man consistently pulls off impossible seeming things in the face of huge skepticism. How many examples does it take before people start taking the guy seriously? Infinity examples?
STC uses an irradiance of irradiance 1000W/m2, in space it seems like you get closer to 1400W/m2. That's definitely better, but also not enormously better.
Seems also like they are rated at 25C, I am certainly not a space engineer but that seems kind of temperate for space where cooling is more of a challenge.
Seems like it might balance out to more like 1.1x to 1.3x more power in space?
In this case it is the "how we dare not trusting all the experts at spaceX."
But even the fallacy itself is applied incorrectly, as we hear zero from anyone else other than the cult leader himself.
It's a political problem, not a tech problem
Switching to a farming lifestyle was certainly not done by choice, but to avoid death by starvation, as we now know that this has caused various health problems, especially in the beginning, presumably until experience has taught them to achieve a more balanced diet, by combining at least 3 kinds of plant seeds, 2 with complementary amino acid profile and 1 kind of oily seeds for essential fatty acids (the most ancient farming societies have combined barley or einkorn or emmer wheat with lentils or peas or a few other legumes less used today and with flax seeds).
or would you prefer them to go to the bathroom upstairs?
at some point big tech is in a "damned if you do, damned if you don't" situation...
3 times the area of the heat dissipating surface compared to solar panel surface brings the satellite temp down to 27 deg C (300 K):
> There is to little matter in space to absorb excess heat.
If that were true the Earth would have overheated, molten and turned to plasma long ago. Earth cools by.... radiative cooling. Dark space is 4 K, thats -267.15 deg C or -452.47 deg Fahrenheit. Stefan-Boltzmann law can cool your satellite just fine.
> You'd need thermal fins bigger than the solar cells.
Correct, my pessimistic calculation results in a factor of 3,...
but also Incorrect, there wouldn't be "fins" thats only useful for heat conduction and convection.
It's the same issue that I have with data centers in space. I don't think there is any big technical hurdle to send a GPU rack into space and run it there. The problem is that I have a hard time to believe it is cheaper to run a datacenter in space. When you have to compete solely on cost, it will super hard.
In a frictionless economy governed by spherical cows it'd be insane. But back here on Earth, AI is heavily bottlenecked by the refusal or inability of the supply chain to scale up. They think AI firms are in a bubble and will collapse, so don't want to be bag holders. A very sane concern indeed. But it does mean that inferencing (the bit that makes money) is constantly saturated even with the industry straining every sinew to build out capacity.
One bottleneck is TSMC. Not much that can be done about that. The other is the grid. Grid equipment manufacturers and CCGT makers like Siemens aren't spinning up extra manufacturing capacity, again because they fear being bag holders when Altman runs out of cash. Then you have massive interconnection backlogs, environmentalists attacking you and other practical problems.
Is it easier to get access to stable electricity supplies in space? It's not inconceivable. At the very least, in space Elon controls the full stack with nearly no regulations getting in the way after launch - it's a pure engineering problem of the sort SpaceX are good at. If he needs more power he can just build it, he doesn't have to try and convince some local government utility to scale up or give him air permits to run generators. In space, nobody can hear you(r GPUs) scream.
It reminds me of growing up in the evangelical church and all the pastors who’d still keep their followers even after they show up in new cars or fly first class, taking the tithes from old ladies on their pension.
It stops making sense the second you ask how you’d dissipate the heat any GPU would create. Sure, you could have vapour chambers. To where? Would this need square kilometers of radiators on top of square kilometers of solar panels? All this just to have Grok in space?
Its an entirely reasonable position in solar panel discussions to say that a 20% solar panel will heat as if 80% of the optical energy incident on the panel was turned into heat. Conservation of energy dictates that the input energy must equal the sum of the output work (useful energy) and output heat.
Not sure what you are driving at here, and just calling a statement ridiculous does not explain your position.
In your opinion, how credible is this story?
It’s not necessarily cheaper energetically to get stuff from an asteroid than from Earth. You’d have to accelerate stuff from a wildly different orbit, and then steer it and slow it down. Metric tonnes of stuff. It’s not physically impossible, but it is wildly expensive (in pure energy terms, not even talking about money) and completely impractical with current technology. We just don’t have engines capable of doing this outside the atmosphere.
> it is possible to put 500 to 1000 TW/year of AI satellites into deep space
This is 500-1000 times as much as current global production.
Musk is talking about building on the Moon 500-1000 times as much factory capacity as currently exists in aggregate across all of Earth, and launching the products electromagnetically.
Given how long PV modules last, that much per year is enough to keep all of Earth's land area paved with contiguous PV. PV doesn't last as long in space, but likewise the Moon would be totally tiled in PV (and much darker as a consequence) at this production rate.
In fact, given it does tile the moon, I suspect Musk may have started from "tile moon with PV" and estimated the maximum productive output of that power supply being used to make more PV.
I mean, don't get me wrong, in the *long term* I buy that. It's just that by "long term" I mean Musk's likely to have buried (given him, in a cryogenic tube) for decades by the time that happens.
Even being optimistic, given the lack of literally any experience building a factory up there and how our lunar mining experience is little more than a dozen people and a handful of rovers picking up interesting looking rocks, versus given how much experience we need down here to get things right, even Musk's organisation skills and ability to enthuse people and raise capital has limits. But these are timescales where those skills don't last (even if he resolves his political toxicity that currently means the next Democrat administration will hate his guts and do what they can to remove most of his power), because he will have died of old age.
That 25% is peak efficiency. It does not take into account:
(1) the temperature of the panel (higher temp->lower efficiency), hence the need for passive cooling of the panels in space due to a lack of working fluid (air).
(2) the angle of the incidence: both angles have to be 'perfect' for that 25% to happen, which in practice puts all kinds of constraints on orientation, especially when coupled with requirements placed on the rest of the satellite.
(3) the effects of aging (which can be considerable, especially in space), for instance, due to solar wind particles, thermal cycling and so on
(4) the effect of defects in the panels causing local failure that can cascade across strings of cells and even strings of panels
(5) the effects of the backing and the glass
(6) in space: the damage over time due to mechanical effects of micro meteorite impact on cells and cover; these can affect the panels both mechanically and electrically
To minimize all of these effects (which affect both operational life span of panels as well as momentary yield) and effectively to pretend they do not exist is proof that you are clueless, and yet you make these (loud) proclamations. Gell-Mann had something to say about this, so now your other contributions suffer from de-rating.
2) pointing the panels straight at the sun for a sun-synchronous orbit is not exactly unobtainium technology
3) through 6) agreed, these issues need to be taken into account but I don't see how that meaningfully invalidates my claim that a solar panel operated at 25% efficiency turns ballpark ~75% of incident photons into heat. Thats basic thermodynamics.
Yes there's the problem of intermittency, varying sun availability and so forth - which is why solar will never provide 100% of our power and we'll also need grid-scale storage facilities and domestic batteries and all sorts of stuff - but just imagine being able to make that many panels in the first place! Literally solar on every roof, that's transformative.
But sure, let's send it all to space to power questionable "AI" datacentres so we can make more fake nudes.
Driving down the cost makes massive overprovision a means of reducing the intermittency because you will be able to cover demand at proportionally far lower output, which also means you'll be able to cover demands in far larger areas, even before looking at storage.
But lower solar costs would also make storage more cost effective, since power cost will be a lower proportion of the amortised cost of the total system. Same with increasing transmission investments to allow smoothing load. Ever cost drop for solar will make it able to cover a larger proportion of total power demand, and we're nowhere near maximising viable total capacity even at current costs.
A whole lot of industrial costs are also affected by energy prices. Drive down this down, and you should expect price drops in other areas as well as industrial uses where energy expensive processes are not cost-effective today.
The geopolitical consequences of a dramatic acceleration of the drop in dependency on oil and gas would also take decades to play out.
At the same time, if you can drive down the cost of energy by making solar so much cheaper, you also make earth-bound data centres more cost-competive, and the cost-advantage of space-bound data centres would be accordingly lower.
I think it's an interesting idea to explore (but there's the whole issue of cooling being far harder in space), but I also think the effects would be far broader. By all means, if Musk wants to poor resources into making solar cheap enough for this kind of project to be viable, he should go ahead - maybe it'll consume enough of time to give him less time to plan a teenage edgelor - because I think the societal effects of driving down energy costs would generally be positive, AI or not, it just screams of being a justification for an xAI purchase done mostly for his personal financial engineering.
I think there's a very interesting use case on edge computing (edge of space, if you wanna make the joke) that in fact some satellites are already doing, were they preprocess data before sending back to Earth. But datacenter-power-level computing is not even near.
I have no idea and numbers to back it up, but I feel it would be even easier to set up a Moon datacenter than an orbital datacenter (when talking about that size of datacenter)
Im sorry, but this is literally every single figurehead in society today.
Space has solar energy going for itself. With underwater you don't need to lug a 1420 ton rocket with a datacenter payload to space.
The real question is, why do you expect Space to have fewer political and engineering issues.
The power radiated is T^4, but 70c is only about 17.1% warmer than 20c because you need to compare in kelvin.
I wonder if this is actually true.
[0] Well, technically in favour of the grain! Pun not initially intended: https://en.wikipedia.org/wiki/Against_the_Grain:_A_Deep_Hist...
> In fairness, solar cells can be about 5x more efficient in space (irradiance, uptime).
Clearly this person was referencing a financial efficiency predominantly through uptime.
Your other points: I agree :)
What do you mean, "people" ? I'm pretty sure Musk is only expecting to send self-assembling Optimus robots [1] to do the whole manufacturing.
[1] "pre-order now, expected delivery any time soon"
(Oh, those times where you try to be sarcastic and realize: "wait, maybe that's the actual plan".)
But yeah, otherwise agree that his conduct, within a corporate context and otherwise, do not merit the kind of public adulation he's getting.
I also remember (vividly at that) his comments on distributed systems when he bought twitter back in the day and was starting to take it over. I remember thinking to myself, if he's just spewing so much bullshit on this, and I can understand this because it's closer to my body of knowledge, what other such stuff is he pronouncing authoritatively on other domains I don't know so much about?
To most normal people this long history of overblown claims and complete failures would disqualify him from serious consideration. To most normal people, a massive illegal siphoning of US government data would be beyond the pale and worthy of jail time.
But in today's age, there's enough smoke and mirrors that such a charlatan can just float on a sea of adulations right on past any consequences.
This only works so long as the atmosphere being displaced weighs more than the balloon plus the payload. As soon as the air gets thin enough that the weight of the balloon+payload is equal to the weight of the air that would fill the volume of the balloon, then it stops rising. (Or, more likely the balloon rips open because it expanded farther than it could stretch).
Usually, this is really high in the atmosphere, but it's definitely not space.
This is all ignoring that orbit requires going sideways really, really fast (so fast, actually, that it requires falling, but going sideways so fast that the earth curves away and you miss).
EDIT: found it on the Internet Archive:
https://web.archive.org/web/20251208110913/http://english.sc...
I will come back and give you my opinions.
I'm sorry, but what? Not only has it had multiple half days of downtime, two full days+, but just two weeks ago had significant downtime.
https://www.thebiglead.com/is-x-down-twitter-suffers-major-o...
I read the person you are quoting differently, as them misunderstanding and thinking that the current 1 TW-peak/year manufacturing was 1 TW-after-capacity-factor-losses/year.
There's been a lot of reporting saying otherwise. Still requiring follow cars. FSD is still trying to kill the driver at random.
[0] https://www.foxbusiness.com/business-leaders/spacex-boss-elo...
XAI isn't a serious venture.
A better orbit might be Sun Synchronous (SSO) which is around 705 km, still not "deep space" but reachable for maintenance or short life deorbit if that's the plan. https://science.nasa.gov/earth/earth-observatory/catalog-of-...
And of course there are the LaGrange points which have no reason to deorbit, just keep using the old ones and adding newer.
So simplistically put there are 3 periods:
1) the grassy period before overgrazing, lot of wind
2) the overgrazed period, loss of moisture retained by plants and loss of root systems, lot of wind results in soil run-away erosion without sufficient root systems
3) the solar PV period: at higher heights still lots of wind, but the installation of the panels unexpectedly allowed the grass to regrow, because wind erosion is halted.
The PV panels actually increase the local heating, but that doesn't need to directly equate to temperature: the wind just carried away the heat so it's someone else's problem :). Also the return of soil moisture thanks to the plants means a return of a sensible heat buffer, so the high temperature in the overgrazed period before solar panel introduction may not actually be an average temperature increase, but an increase in peak temperature during the summer. Imagine problematic summer temperatures, everybody would be talking about the increased temperature, when they are really just experiencing the loss of a heat buffer.
At least thats my impression from the story.
We will see how the maths works out given there is 19 GW shortage of power. 7 year lead time for Siemens power turbines, 3-5 years for transformers.
Raw commodities are shooting up, not enough education to cover nuclear and SMEs and the RoI is already underwater.
What good is compute if you can't interface with it? This is where we are now: https://en.wikipedia.org/wiki/Deep_Space_Optical_Communicati...
SpaceX may be leading in short-range (few hundred km) space-to-space data transfer but there is a long way to go for terabit/s deep-space links.
More disturbing than surprising.
Which Musk has no intention to fix, of course, because he's more about money and (buying) status with it. He had an opportunity but decided to aid the regime in extracting people's data instead (probably selling it to adversaries).
This is the big one - Musk knows that if he convinces enough people, they will invest the billions / trillions necessary, making him stupendously rich.
But anyone investing in that is... not a good investor, to be politically correct, because what's the expected return on investment? Who are the customers? What is the monetization? Or bar that, how does it benefit humanity?
It's throwing money down the drain. If you're an investor and are considering this, consider investing in earth instead. Real projects with real benefits. There's enough money to fix hunger, poverty, housing, education, and everything. Enough money to buy and / or fund politicians to make the necessary changes.
10 years ago when Tesla actually revolutionized the retail EV industry everyone took his word for it. Then after a few failed prognostications the nerds started to doubt his credibility, a few more years of this and the tech press started to see through it, and now he's reduced to only the MAGA-faithful falling for his Phony Stark act. The ground is coming up fast.
I'm guessing the next argument in the chain will be that we can mine materials from asteroids and such?
It's probably not competitive at all without having fully reusable launch rockets, so the cost to LEO is a lot lower.
...That's only relevant if you start from the position that your datacenters have to be space.
You could already make smaller datacenters on earth, and still have better cooling, if you were concerned about that. We don't do that because on earth it's more efficient to have one large datacenter than many small ones.
Perhaps. But I can also see someone wanting to use their money to fund space exploration because it is more exciting.
As an aside, I strongly suspect that to solve the problems you think are more worthy, it isn't money that is the problem, but rather social, structural, cultural, and other issues mostly.
Computers and internet being storage, processing and communication systems are clearly useful for civilian purposes
The scale there is a little bit different. If you're training an LLM with 10,000 tightly-coupled GPUs where one failure could kill the entire job, then your mean time to failure drops by that factor of 10,000. What is a trivial risk in a single-GPU home setup would become a daily occurrence at that scale.
That's really understating things. He has promised so many things at various times that the "hits" are at best 10% of what he says. You can't just cherry pick his successes and say "well maybe this will work too" with a track record like that.
What do you project out of the Martian market?
Tesla isn't even in the top 15 auto manufacturers by volume? The largest manufacturer Toyota produces 9x the cars Tesla does. Tesla is also on a multiyear sales drop with no sign of sales improvement.
The top 15 car makers produced 70 million cars, to Tesla's 1.7m. They have no enormous volume, at all.
https://en.wikipedia.org/wiki/List_of_automotive_manufacture...
If Tesla's stock traded in line with its competitors, its a $30-40B company. The hype around future growth (now completely off the charts) is the only reason the stock price is out of line with reality. There is no reason to expect Tesla's sales figures to improve going forward, in fact, they will continue to decrease.
> Tesla throws off cash which allows the flywheel to keep spinning
Tesla had a profit of $3.8b in 2025 (this is a 46% drop from 2024 and a second year over year drop). It's revenue was $94b (also less than 2024), which places it 12th among auto manufacturers. It's profit is 6th, which is a decent margin compared to legacy makers, but as mentioned above, the profit is plummeting as Tesla struggles to sell cars. It's revenue among all global companies is not even in the top 100.
It does not "throw off cash", the business is in a tailspin.
>They've constantly proved their naysayers wrong at every turn in time
Musk has been promising full self driving mode is within six months to a year away. He first made those claims in the mid 2010s? Do Tesla's have full self driving mode in 2026?
There is a decade long trail of failed claims from Musk and Tesla.
In 2019, Musk predicted 1 million Tesla robotaxis on the road by 2020. How many Tesla robotaxis are on the road in 2026? Fifty? One hundred? It's a rounding error compared to the claim that they'd have a million in 2020...
Musk said in 2019 that he believed Tesla vehicles were not traditional depreciating assets and instead could appreciate because they contained future-value technologies, especially Full Self-Driving (FSD): “I think the most profound thing is that if you buy a Tesla today, I believe you are buying an appreciating asset — not a depreciating asset.”
In fact, Tesla's are among the worst depreciating vehicles on the market today, their depreciation compares to the low end car market of Nissan, Hyundai and other low quality manfacturers.
Elon projected 250-500k Cybertruck sales per year. In reality, they sold 38k in 2024, and just 16k in 2025.
>They've constantly proved their naysayers wrong at every turn in time
Musk is suggesting manufacture at a scale sufficient to keep the Earth's entire land area tiled in working PV.
If the maths I've just looked at is correct (first glance said yes but I wouldn't swear to it), that on the ground would warm the earth by 22 C just by being darker than soil; that in the correct orbit would cool it by 33 C by blocking sunlight.
A reason. I'm sure that theoretically it's possible, assuming infinite money and an interest to do so. But literally, why would we? There's no practical ways to get the power back on earth, it's cheaper to build a solar field, etc.
And I don't believe datacenters in space are viable, cost wise. Not until we can no longer fit them on earth, AND demand is still increasing.
And permitting is challenging in part because it’s so different from place to place. Their permitting process with the FAA seems pretty streamlined.
Solar powered datacenters on Earth don't make sense to me. The GPUs are so expensive you want to run them 24/7 and power cycling them stresses the components a lot so increases failure rate. Once it boots up you need to keep the datacenter powered, you can't shut it down at night. Maybe for CPU datacenters solar power can make sense sometimes, but not for AI at the moment.
Nuclear is super hard and expensive to build. It probably really is easier to put servers in space than build nuclear.
[citation needed]
Because according to Bob Taylor, who initially got the funding for what became ARPANET:
> Taylor had been the young director of the office within the Defense Department’s Advanced Research Projects Agency overseeing computer research, and he was the one who had started theARPANET . The project had embodied the most peaceful intentions—to link computers at scientific laboratories across the country so that researchers might share computer resources. Taylor knew theARPANET and its progeny, the Internet, had nothing to do with supporting or surviving war—never did.Yet he felt fairly alone in carrying that knowledge.
> Lately, the mainstream press had picked up the grim myth of a nuclear survival scenario and had presented it as an established truth. When* Time magazine committed the error, Taylor wrote a letter to the editor, but the magazine didn’t print it. The effort to set the record straight was like chasing the wind; Taylor was beginning to feel like a crank.
* https://www.goodreads.com/book/show/281818.Where_Wizards_Sta... § Prologue
> Taylor told the ARPA director he needed to discuss funding for a networking experiment he had in mind. Herzfeld had talked about networking with Taylor a bit already, so the idea wasn’t new to him. He had also visited Taylor’s office, where he witnessed the annoying exercise of logging on to three different computers. And a few years earlier he had even fallen under the spell of Licklider himself when he attended Lick’s lectures on interactive computing.
> Taylor gave his boss a quick briefing: IPTO contractors, most of whom were at research universities, were beginning to request more and more computer resources. Every principal investigator, it seemed, wanted his own computer. Not only was there an obvious duplication of effort across the research community, but it was getting damned expensive. Computers weren’t small and they weren’t cheap. Why not try tying them all together? By building a system of electronic links between machines, researchers doing similar work in different parts of the country could share resources and results more easily. […]
* Wizards § Chapter 1
The first four IMPs were UCLA, SRI, UCSB, and Utah. Then BBN, MIT, RAND, System Development Corp., and Harvard. Next Lincoln Laboratory and Stanford, and by the end of 1970 Carnegie-Mellon University and Case Western Reserve University.
It was only "later in the 1970s" that command and control was considered more (Lukasik):
* https://en.wikipedia.org/wiki/ARPANET#Debate_about_design_go...
But the first two people who get the project going, Taylor and Herzfeld, were about the efficient use of expensive computer resources for research. Look at the firs >dozen sites and they were about linking researchers: the first DoD site wasn't connected until 3-4 years after things go going, and there was nothing classified about it. MILNET didn't occur until 1984:
The politics on the ground is much harder. Countries own the land, you need lots of permits, electricity generation is in contest with other uses.
Paypal is in no way a Musk creation, no one makes that claim and in fact they got rid of him quite quickly.
X has plummeted in value, and is worth a fraction of what he paid for it? How is this "pulling it off" by shrinking the user base, revenue, etc? While we don't have publicly audited figures, they announced a net loss for the first three quarters of 2025, while it posted profits prior to his purchase.
FSD isn't even real? Why would you cite a feature that doesn't actually exist as an example of "Elon pulling it off"? He promised FSD would be available over a decade ago, and it's still not real.
> How many examples does it take before people start taking the guy seriously?
I'd personally settle for real examples, and not the false ones cited above.
The answer, as you surmised, is indeed radiators.
He's basically trading two cypto coins with himself and sending out a press release.
Depends on the deserts in question and knock-on effects: Saharan Dust Feeds Amazon’s Plants.
* https://www.nasa.gov/centers-and-facilities/goddard/nasa-sat...
Helping vegetation in one place to grow may hinder it somewhere else. How important this is still appears to be an open question:
* https://www.nature.com/articles/s43247-020-00071-w
I'm not sure if humans are wise enough yet to try 'geo-hacking' (we're already messing things up: see carbon dumping).
[1]: https://www.reuters.com/business/autos-transportation/tesla-...
And people are using it for revenge porn? I haven't seen that. I've just seen that grok pioneered really good deep web search, is less woke than other LLMs and grok imagine has really good video generation and pretty good image gen. Plus the X timeline feed is really good!
> A_radiator / A_PV = ~3;
Seems like you're in agreement. There's a couple more issues here--
1. Solar panels are typically big compared to the rest of the satellite bus. How much radiator area do you need per 700W GPU at some reasonable solar panel efficiency?
2. Getting the satellite overall to an average 27C temperature doesn't necessarily keep the GPU cool; the satellite is not isothermal.
My back of the envelope estimate says you need about 2.5 square meters of radiator (perhaps more) to cool a 700W GPU and the solar panel powering the GPU. You can fit about 100 of these GPUs in a typical liquid-cooled rack, so you need about 250 square meters of radiator to match one rack. And, unfortunately, you can't easily use an inflatable structure, etc, because you need to conduct or convect heat into that radiator.
This assumes that you lose no additional heat in moving heat or in power conversion.
And they’re going to mass a -lot-. Not that anyone would use a pyramid— you would want panels with the side facing the sun radiating too. There are plenty of surfaces that radiate more than they absorb at reasonable temperatures in sunlight.
Considering how foundational energy is to our modern economy, energy several orders of magnitude cheaper seems quite likely to have massive implications.
Yes it might be intermittent, but I'm quite confident that somebody will figure out how to effectively convert intermittent energy costing millicents into useful products and services.
If nothing else, incredibly cheap intermittent energy can be cheaply converted to non-intermittent energy inefficiently, or to produce the enablers for that.
Reports in North Virginia and Texas are stating existing data centres are being capped 30% to prevent residential brownouts.
I’m not saying this is a good idea. I’ve got a lot of SpaceX stock, and I wasn’t really happy to hear the news, this is mostly me trying to understand why they might think this is a good idea, and brainstorming out loud, with a dash of coping. Seems most here think that it’s just stupid, but then, most commenters thought Starlink was stupid, iirc, and that turned out to be wildly wrong. But it might also just be stupid this time.
That's good for now, but considering the federal push to prevent states from creating AI regulations, and the overall technological oligopoly we have going on, I wonder if, in the near future, their energy requirements might get prioritized. Again, cynical. Possibly making up scenarios. I'm just concerned when more and more centers pop up in communities with less protections.
In a way, it's perfect. If what you're promising is sufficiently vacuous and you're a true believer, you can get away with. If you're promising something concrete and deliverable, fraud is so much easier to prove.
Building data centers in Antarctica with nuclear power would be easier. And still way harder than necessary.
Why couldn't xAI just, you know, contract with SpaceX to launch its future Datacenters In Space?
Wouldn't a company focused on a single mission, Datacenters In Space, be better at seeing that goal to fruition, instead of a Space Launch Company with a submission of Datacenters In Space, which might decide to drop the project in three years to focus on their core mission of being a Space Launch Company?
Even granting the goal as desirable and possible, why is a merger the best way to pull it off?
Exactly the opposite of space, where all cooling must happen through radiation, which is expensive/inefficient
But seriously, why are all the stans in these comments as unknowledgeable as Elon himself? Is that just what is required to stan for this type of garbage?
Wouldn't he be able to float solar panels and GPUs out into international waters and run them on cargo ships powered by bunker fuel much (much much) cheaper than launching them into space?
So in a way, it was closer to the current internet than an electrical telegraph (it was farther in other ways though).
It looks that way...
> They've constantly proved their naysayers wrong at every turn in time.
They have not done anything of the sort.
AFAIK the Télégraphe Chappe was the first general purpose telegraph able to send arbitrary messages, and was used by both the administration (for civilian as well as military purpose) and the private sector for business.
Trying to do billionaire space shit while there is extreme poverty is a dangerous game imo; but I guess flaunting their wealth hasn't had any consequences so far.
Hard to argue with the basic idea here.
I think this is how the masses feel at this point. Progress bad. Capitalism inherently bad. Anything non-natural, bad.
The most efficient design and the most theoretically convincing one are not in general the same. I intentionally veer towards a configuration that shows it's possible without requiring radiating surface with an area of a square Astronomical Unit. Minimizing the physics and mathematics prerequisites results in a suboptimal but comprehensible design. This forum is not filled with physicists and engineers in the physical sciences, most commenters are programmers. To convince them I should only add the absolute minimum and configure my design to eliminate annoying integrals (for example the heat radiated by earth on the satellite is sidestepped by simply sacrificing 2 of the triangular sides of the pyramid to be mere reflectors of emissivity ~0, this way we can ignore the presence of a nearby lukewarm earth). Another example is the choice of a pyramid: it is convex and none of the surfaces are exactly parallel to the sun rays (which would result in ambiguity or doubt, or make the configuration sensitive to the exact orientation of the satellite), a more important consequence of selecting a convex shape is that we don't have to worry about heat radiated from one part of the satellite surface, being reabsorbed by another surface of the satellite (in view of the first surface), a convex shape insures no surface patch can see another surface patch of the satellite. And yes I pretend no heat is radiated by the solar panel itself, which is entirely achievable. So I intentionally sacrifice a lot of opportunities for more optimal design to show programmers (who are not trained in mathematical analysis, and not trained with physics textbook theorem-proof-theorem-proof-definition-theorem-proof-...) that physically it is not in the real of the impossible and doesn't result in absurdly high radiator/solar panel area ratios.
To convince a skeptic you 1) make pessimistic suboptimal estimates with a lot of room for improvement and 2) make sure those estimates require as little math and physics as possible, just the bare minimum to qualitatively and quantitatively understand the thermodynamics of a simple example.
You are asking the right questions :)
Given the considerations just discussed I feel OK forwarding you to the example mini cluster in the following section:
It describes a 230 kW system that can pretrain a 405B parameter model in ~17 days and is composed of 16x DGX B200 nodes, each node carrying 8x B200 GPUs. The naive but simple to understand pyramid satellite would require a square base (solar PV) side length of 30 m. This means the tip of the pyramid is ~90m away from the center of the solar panel square. This gives a general idea of a machine capable of training a 405B parameter model in 17 days.
We can naively scale down from 230 kW to 700 W and conclude the square base PV side length can then be 1.66 m; and the tip being 5 m "higher".
For 100 such 700 W GPU's we just multiply by 10: 16.6 m side length and the tip of the pyramid being 50 m out of the plane of the square solar panel base.
It's much more difficult to cool things in space than on earth.
Your differences from my number: A) you're working based on spacecraft average temperature and not realizing you're going to have a substantial thermal drop; B) you're assuming just one side of the surface radiates. They're on the same order of magnitude. Both of us are assuming that cooling systems, power systems, and other support systems make no heat.
You can pick a color that absorbs very little visible light but readily emits in infrared-- so being in the sun doesn't matter so much, and since planetshine is pulling you towards something less than room temperature, it's not too bad either.
None of these numbers make me think "oh, that's easy". You're proposing a structure that's a big fraction of the size of the ISS for one rack of GPUs.
I don't really think cooling in space is easy. The things I have to do to get rid of an intermittent load of 40W on a small satellite are very very annoying. The idea of getting rid of a constant load of tens of kilowatts, or more, makes me sweat.
Keep in mind that the current state of space electronics is centered around one-off very expensive launches, where the electronics failure would be a fiscal disaster. (See JWST)
Being able to rapidly launch cheap electronics may very well change the whole outlook on this.
That's why people are trying to build solar here. Our power is expensive due partially to failing to build basically any new generation, and some land is very cheap, and the operational cost of a solar farm is minuscule.
Solar farming is basically an idle game in real life and my addiction is making me itchy.
You can overprovision, and you should with how stupidly cheap solar is.
That we aren't spending billions of Federal dollars building solar anywhere we can, as much as we can, is pathetic and stupid and a national tragedy.
We got so excited about dam building that there's no where to build useful dams anymore, and there is significant value to be gained by removing those dams, yet somehow we aren't deploying as much solar as we possibly can?
It's a national security issue. China knows this, and is building appropriately.
The southwest should be generating so much solar power that we sequester carbon from the atmosphere simply because there is nothing else left to do with the power.
Morse's electrical single wire telegraph was an instant success and quickly transformed the world. It wasn't an evolutionary advance over the Chappe, it was revolutionary.
There were also electric lights before Edison's lightbulb. But Edison invented a lightbulb that was simple, cheap, reliable, and it worked. Hence his bulb gets the nod. He nailed it.
Actually provide an argument instead of just asserting this.
On earth, deployment of a built solar panel is screwing it into a dirt cheap frame on the ground.
To deploy a solar panel in space, you must attach it to a satellite that no one involved has even pretended to claim is designed, so you need a factory for those on the same order of magnitude as your panels, you need enough boost capacity, so a factory for rockets, and a much larger fuel industry, and then you need all the immense engineering required to do any of that at all, and then you need to spin up the industries to supply this brand new industry, and then you need to manage all those satellites in space, and then you still don't get any actual power because it's all in space so you haven't scaled SHIT
It's all absolute horseshit. No, none of this is planned. He's just going to cash in on the IPO.
He thought SETI listening to space radio waves was dumb, so made essentially a satirical paper saying we should look for heat instead, because "an advanced civilization would be using these Shells to capture all star energy, so we could only see the heat"
The "dyson sphere" was a made up and entirely unfounded claim, without justification.
He was throwing shade.
Right? So if that's the case why would putting them in Space, far less accessible in every conceivable way, with numerous additional expenses and engineering constraints, be cheaper?
Also AI GPUs are the exact opposite of cheap electronics
Maybe there's a concentration in VA because there's a set of deals/procedures in place with infra providers there that make it easy to scale up, similar to how DE has well developed corporate infrastructure, so everyone incorporates there. But that stops when the area hits its limit in power provision (which seems to be happening right now). In which case, being able to do this yourself end to end by putting this stuff in space with your own power generation makes it the ultimate scale-up opportunity - no real limits on space or power availability, so once you get that method down, you can mass-scale and get great economies of scale. Maintenance isn't a thing, these will be disposable.
I think that's it, money's not the limiting factor if they can pitch this successfully, which I think they will. They want massive scale without the constraints you hit when doing it on earth. I think he's aiming for scale that we haven't seen in DCs on earth.
> Not sure how you can say that.
Because Elon canceled the Model 2.
> unscalable techniques like LIDAR
What, exactly, is unscalable about LiDAR? BYD appears to be planning to include LiDAR (one unit, presumably forward facing) in even their cheapest cars effective quite soon, and they seem to have a few tens of thousands of LiDAR units already on the road.
And Waymo’s solution is expensive but seems to scale fine.
Meanwhile, there is certainly nothing inherently that prevents scaling a pure-vision approach that relies on massive in-car computation, but Tesla wants to use their AI5 chips and they seem to be struggling to produce and scale them. (They also apparently want to launch them into space, but it’s not really clear that they exist.)
https://oag.ca.gov/news/press-releases/attorney-general-bont...
https://www.reuters.com/legal/litigation/grok-says-safeguard...
https://www.nytimes.com/2026/01/09/technology/grok-deepfakes...
https://www.vogue.com/article/grok-deepfakes-trend-essay
https://www.the-independent.com/tech/ai-grok-twitter-fake-im...
https://techpolicy.press/the-policy-implications-of-groks-ma...
https://www.rollingstone.com/culture/culture-features/grok-s...
The French raided the X offices in Paris.
> https://www.theguardian.com/technology/2026/feb/03/french-he...
> It said the alleged offences it was investigating now included complicity in the possession and organised distribution of child abuse images, violation of image rights through sexualised deepfakes, and denial of crimes against humanity.
40% isn't much in the grand scheme of things, but maybe they can reach higher reduction with more research/materials. Mass and power are pretty cheap for spaceX, so shipping more solar panels and a heap pump might not be a deal breaker.
Would e.g. a reduction of 90% in radiator area change the overall picture on the overall feasibility? I think not, it would still be ludicrous, but I'd be happy to be proven wrong.
But those two parameters are not equals: 3x the cost per kg is a much higher number then 4x the solar power.
Yes, I could make more optimistic calculations: use the steradians occupied by earth, find and use the thermal IR emissivities of solar panels place many thin layers of glass before the solar panel allowing energy generating photons through and forming a series of thermal IR black body radiators as a heat shield in thermal IR, the base also radiates heat outwards and at a higher temperature, use nonsquare base, target a somewhat higher but still acceptable temperature, etc... but all of those complicate the explanation, risking to lose readers in the details, readers that confuse the low net radiative heat transfer between similar temperature objects and room walls in the same room as if similar situation applies for radiative heat transfer when the counterbody is 4 K. Readers that half understand vacuum flasks / dewars: no or fewer gas particles in a vacuum means no or less energy those particles can collectively transport, that is correct but ignores the measures taken to prevent radiative heat loss. For example if the vacuum flask wasn't mirror coated but black-body coated then 100 deg C tea isolated from room temperature in a vacuum flask is roughly 400 K versus 300 K, but Stefan Boltzmann carries it to the fourth power (4/3) ^ 4 = 3.16 ! That vacuum flask would work very poorly if the heat radiated from the tea side to the room-temperature side was 3 times higher than the heat radiated by the room temperature side to the tea-side. The mirroring is critical in a vacuum flask. A lot of people think its just the vacuum effect and blindly generalize it to space. Just read the myriad of comments in these discussions. People seriously underestimate the capabilities of radiative cooling because the few situations they have encountered it, it was intentionally minimized or the heat flows were balanced by equilibrium, not representative for a system optimized to exploit radiative heat transfer.
Some small corrections:
>Both of us are assuming that cooling systems, power systems, and other support systems make no heat.
I do not make this assumption! all heat generated in the cooling, power and other support systems stem from electrical energy used to power them, and that energy came from the solar panels. The sum of the heat generated in the solar panel and the electrical energy liberated in the solar panel must equal the unreflected incident optical power. So we can ignore how efficient the solar panel is for the rest temperature calculation, any electrical energy will be transformed to heat and needs to be dissipated but by conservation of energy this sum total of heat and electrical energies turned into heat must simply equal the unreflected energy incident on the solar panel... The solar panel efficiencies do of course matter a lot for the final dimensions and mass of the satellite, but the rest temperature is dictated by the ratio of the height of the pyramid to the square base side length.
>You can pick a color that absorbs very little visible light but readily emits in infrared-- so being in the sun doesn't matter so much, and since planetshine is pulling you towards something less than room temperature, it's not too bad either.
emissivity (between 0 and 1) simultaneously dials how well it absorbs photons at that wavelength as well as how efficiently it sheds energy at that wavelength. A higher emissivity allows the solar panel to cool faster spontaneously, but at the cost of absorbing thermal photons from the sun more easily! Perhaps you are recollecting the optimization for the thermal IR window of our atmosphere, the reason that works is because it works comparatively to solar panels that don't exploit maximum emissivity in this small window. The atmospheric IR window location in the spectrum is irrelevant in space however.
> A) you're working based on spacecraft average temperature and not realizing you're going to have a substantial thermal drop;
of course I realize there will be a thermal gradient from base to apex of the pyramidal satellite, it is in fact good news: near the solar panel base the triangular sides have wider area and hotter temperature, so it sheds heat faster than assuming a homogenous temperature (since the shedding is proportional to the fourth power of temperature). When I ignore it it's not because I'm handwaving it away, it's because I don't wish to bore computer science audience with integral calculations, even if they bring better news. Before bringing the better news you need to bring the good news that its possible with similar order of magnitude areas for the radiator compared to the solar panels, without their insight that its feasible first, its impossible to make them understand the more complicated realistic and better news picture, especially if they want to not believe it... Without such proof many people would assume the surface of the radiator would need to be 10's to 100's of times the surface area of the solar panels...
> B) you're assuming just one side of the surface radiates.
No, I even explicitly state I only utilize 2 of the 4 side triangles of the pyramid (to sidestep criticisms that earth is also radiating heat onto the satellite). So I make a more pessimistic calculation and handicap my didactic example just to show you get non-extreme surface ratios even when handicapping the design. If you look at history of physics, you will often find that insights were obtained much earlier by prior individuals, but the community only accepted the new insights when the experimental design was simplified to such an extent that every criticism is implicitly encoded in the design by making it irrelevant in the setup, this is not explicitly visible in many of the designs.
Paraphrasing him, "You can be the first pizza restaurant owners on Mars" and "The price of a ticket isn't far off the price of a house, normal people can get a loan for it". What bank in their right mind would lend even just $100k to a normal person for a ticket to a place, let alone one with worse economic prospects than La Güera in Western Sahara?*
Don't get me wrong, if there was any seriousness behind this I was, and might still be, excited by the prospect of a new world… but even if I had not soured on Musk politically, I would not trust his plans when they come with this level of attention to detail (not even in rhetoric).
* I don't trust LLMs where I can't verify them, but I did ask it for a vibe check about the cost of research needed for making a pizza from ISRU on mars, and the first step was water purification for which it estimated a few hundred million, and a combined cost with all the other steps 4-10 billion (before launches)
17% in T^4 is almost 2x - plugging 293 (in Kelvin of course) in the calculator i get 417 W/m2 vs. 784W/m2 that i got earlier for the 343 (Kelvin for the 70 Celsius).
The ISS targets rejecting 70KW and has something like 140m2 of radiators. These radiators are attached to the ISS and use a lot of plumbing to carry the cooling liquid.
Where is GPUs and everything can be attached directly to the radiators and solar panels. So 70KW - 70 GPUs - can be placed right onto the 10m by 10m radiator panel. In front of those GPUs sitting on that radiator - a 15m by 20m solar panels assembly. Whole thing is less than 1 ton. Between $10K and $100K on Starship.
China is an interesting mix though, hard to draw conclusions from there.
Delta V from just about anywhere in the solar system is lower than launching from the surface of Earth. You could launch stuff from Mars and bring it back to Earth orbit with less energy than launching it from Earth. The rocket equation is really punishing.
For housing maybe. It’s useful to have governments nudge developers to build affordable housing, which is less profitable, but if you have enough supply it can work. It does not work in most of Europe, where land is scarce and expensive and developers still want money. More than zoning laws, housing issues in Europe is in large part caused by the lack of government-build (or subsidised) affordable housing on the low end.
For healthcare, hell no! A single payer brings massive economies of scale and a lot of bargaining power, which limits price gouging. Hospitals are local natural monopolies, it makes no economic sense to have enough of them around to have meaningful competition. Demand is very inelastic and people just pay what they must to get treated (when they can pay). Insurance companies have interests that are directly opposed to those of their customers. Most people do not cost much for most of their lives, but have crippling expenses at some unpredictable points when they get sick or have an accident. National social security schemes smooth out the risks over the whole population, which makes everything more manageable. To me, healthcare is the opposite of a situation where free market makes sense.
I think I get it. If we could convert 100% of the waste heat into useful power, then all good. And that would get interesting because it would effectively become "free" compute - you'd put enough power into the system to start it, and then it could continue running on its own waste heat. A perpetual motion machine but for computing.
But we can't do that, because physics. Everything we could do to generate useful energy from waste heat also generates some waste heat that cannot be captured by that same process. So there will always be some waste heat that can't be converted to useful energy, which needs to be ejected or it accumulates and everything melts.
Nah -- when we're talking about how much it takes to power 70kW of GPUs, we need to include some kind of power utilization efficiency number. If 70kW is really 100kW, then we need to make this ridiculously big design 40% larger.
> >You can pick a color that absorbs very little *visible light* but readily emits in *infrared*-
> how well it absorbs photons at that wavelength as well as how efficiently it sheds energy at that wavelength.
Yes. Planetshine is infrared, 290K-ish; sunshine is 5500K-ish and planetary albedo is close enough to this, with a very small portion of its light being infrared. You are being long winded and not even reading what you reply to.
So, for example, white silicate paint or aluminized FEP has a equilibrium temperature in full sun, with negligible heat conducted to or away from it, somewhere in the span of -70 to -40C depending upon your assumptions. It will happily net radiate away heat from above-room temperature components while facing the sun.
It will also happily net radiate away heat when facing the planet because the planet is under room temperature and the planet doesn't subtend a whole hemisphere even in LEO.
I don't really like argument from authority, but... I will point out that I am the PI for multiple satellite projects and have owned thermal design, and that the stuff I've flown in space has ended up at very close to predicted temperatures. I don't feel like this is an easy thermal problem.
I mean, it's easy in the sense of "it takes a radiator area about the same as the floor area of my house". It's not easy in the sense of "holy shit I need to launch a radiator that's bigger than my house and somehow conduct all that heat to it while keeping the source cool."
> of course I realize there will be a thermal gradient from base to apex of the pyramidal satellite
No, there will be a thermal gradient from the hot thing -- the GPU -- to the radiator surface. S-B analysis is OK for an exterior temperature, but it doesn't mean the stuff you want to keep cool will be that average temperature. This is why we end up with heat pipes, active cooling loops, etc, in spacecraft.
If this wasn't a concern, you could fly a big inflated-and-then-rigidized structure and getting lots of area wouldn't be scary. But since you need to think about circulating fluids and actively conducting heat this is much less pleasant.
A regular set of servers will straight up be destroyed if put on a rocket and launched into space: the motherboards and PCBs aren't mounted or rated to survive the vibration. The connectors and wiring isn't rated for that vibration. Sure, some probably make it, but you will lose machines from just launching them alone. Any electrolytic capacitors in there? If your system exposes them to vacuum or even just low pressure, then those likely die too. Solar panels? We can launch them obviously, there's a reason people send up expensive solar panels: because you're doing a lot of work making sure they'll physically survive the launch.
So of course, now you have to build a space-rated server frame, PCBs and GPUs. You ain't going to buying bulk H100's from Nvidia. And you have to package and mount it to get it both survive the launch and physically fit into the payload bay. Then you have to add a deployment system for it, sensors etc. And then you have to add an assembly system, because if it doesn't fit in one launch (you're proposing 250+ launches for power alone) then all of these systems need to be assembled in orbit. How are they going to be assembled? How are they going to be maneuvered? Even if you could rendezvous accurately with the construction orbit, we're talking months of drift from every little thing knocking stuff around, putting it into a spin, etc.
So either each of these is now a fully contained satellite, complete with manoeuvering system and power, or you're also needing to develop a robotic assembly system - with power and manoeuevering in order to manage and assemble all this.
And let's not forget mission control: every single one of these steps is incurring a bunch of labor costs to have people manage it. And not cheap labor costs: you're going from "guys who roll racks in and plug stuff in and can be trained up easily" to "space mission control operators".
Is this doable? Probably. Is this going to be in anyway cheaper then Earth? Not in the slightest, and it's not going to be close.
https://www.imo.org/en/mediacentre/pressbriefings/pages/imo-...
I wouldn't be too surprised by beamed power being used on Mars, because that planet has global dust storms during which nowhere on the surface is getting much light, but it doesn't make as much sense here: because of the atmospheric window, you either use 0.4µm-to-10µm-wavelengths or 10cm-to-10m-wavelengths* with not much in between, µm means lasers and the mere possibility you may have included lasers powerful enough to be useful means everyone else will demand something similar to the IEA nuclear inspection program or will put similar lasers on the ground and shoot them upward to destroy those satellites, while cm-wavelengths means each ground station is a *contiguous* roughly 10km diameter oval.
Given the expensive part of large-scale PV has shifted from the PV itself to the support structures they're on, the ground station ends up about the same cost as a same-sized PV installation, and because that's just the ground station this remains true even if all the space-side components are zero cost. Normal ground-based PV also has the advantage that it doesn't need to be contiguous.
It is also possible to use a purely-ground-based method to transfer power from the other side of the world; a cable thick enough that the resistance is only 1 Ω the long way around is already within the industrial capacity of China, but the same geopolitical issues that would make people hostile to foreign beamed power satellites also makes such a cable a non-starter for non-technical reasons.
* https://en.wikipedia.org/wiki/File:Atmospheric_electromagnet...
They highlight the exact reliability constraint I was thinking of: that replacing failed TPUs is trivial on Earth but impossible in space. Their solution is redundant provisioning, which moves the problem from "operationally impossible" to "extremely expensive."
You would effectively need custom, super-redundant motherboards designed to bypass dead chips rather than replace them. The paper also tackles the interconnect problem using specialized optics to sustain high bitrates, which is fascinating but seems incredibly difficult to pull off given that the constellation topology changes constantly. It might be possible, but the resulting hardware would look nothing like a regular datacenter.
Also this would require lots of satelites to rival a regular DC which is also very hard to justify. Let's see what the promised 2027 tests will reveal.
Keep in mind this is in response to "basically no downtime"
If you told me Microsoft had "basically no downtime" I'd have the same reaction.
So...it's not that you don't understand how what Elon does works, you do understand it, and your descrpition of him is accurate, you just seem to think it's unfair that it does work? "unearned gravitas" "w/o much expertise" "sheer force of grand will"
So you're saying Elon isn't a deferential technically-talented leader, he's wilful and a marketer, who you feel constantly changes course, and so maybe the people who work for him are not as aligned as I believe with what he's doing?
I don't think your view is based on personal experience, but you get my, point, yes?
The feeling I get about you here is you simply dislike his companies and Musk and am enjoying seeing him get what he deserves, right? Which I think is the personal mirror of the "state feeling" behind the current official actions.
More broadly, your comments and many others like it in these threads, identify a narrow band of content with the product as a whole. And the implication being if you disagree with hatred against Musk / xAI, you must be a pervert. Which is intended as a reputational threat to intimidate people into not voicing support.
But if an LLM is used to create bad content by some, does that mean the only content it can create is bad? Does that mean that every user is using it to create bad content?
If xAI has a problem with bad content, they need better controls. I don't think these state efforts nor discourse are about the bad content. I think that issue is just a vector through which to assert pressure. I think it's because people in power want control over something that is, annoyingly to them, resisting control. And not in a way that's about "bad content", but in a way that's about inconvenient-to-them content.
It's more likely that he genuinely believes that he's building the future of human civilization, and he wants himself in charge of that so that he can shape it how he sees fit.
You're right that our socioeconomic system unfortunately doesn't have any guardrails for that kind of behavior. Arguably that's a bug (or yet another symptom of the architecture being fundamentally flawed).