zlacker

[return to "xAI joins SpaceX"]
1. gok+h4[view] [source] 2026-02-02 22:06:22
>>g-mork+(OP)
> it is possible to put 500 to 1000 TW/year of AI satellites into deep space, meaningfully ascend the Kardashev scale and harness a non-trivial percentage of the Sun’s power

We currently make around 1 TW of photovoltaic cells per year, globally. The proposal here is to launch that much to space every 9 hours, complete with attached computers, continuously, from the moon.

edit: Also, this would capture a very trivial percentage of the Sun's power. A few trillionths per year.

◧◩
2. rainsf+RA[view] [source] 2026-02-03 00:24:23
>>gok+h4
We also shouldn't overlook the fact that the proposal entirely glosses over the implication of the alternative benefits we might realize if humanity achieved the incredible engineering and technical capacity necessary to make this version of space AI happen.

Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?

This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.

◧◩◪
3. elihu+zO[view] [source] 2026-02-03 01:54:54
>>rainsf+RA
Honestly, there's not a lot else I can think of if your goal is find some practical and profitable way to take advantage of relatively cheap access to near-Earth space. Communication is a big one, but Starlink is already doing that.

One of the things space has going for it is abundant cheap energy in the form of solar power. What can you do with megawatts of power in space though? What would you do with it? People have thought about beaming it back to Earth, but you'd take a big efficiency hit.

AI training needs lots of power, and it's not latency sensitive. That makes it a good candidate for space-based compute.

I'm willing to believe it's the best low-hanging fruit at the moment. You don't need any major technological advances to build a proof-of-concept. Whether it's possible for this to work well enough that it's actually cheaper than an equivalent terrestrial datacenter now or in the near future is something I can't answer.

◧◩◪◨
4. advent+cY[view] [source] 2026-02-03 03:03:14
>>elihu+zO
Bezos has been pushing manufacturing-in-space for a long time, as a ideal candidate for what to do in space that you might prefer to not do on Earth. Robotics, AI automation, manufacturing - combo it in space, let the robots manufacture for us in space. Abundant energy, low concerns about most forms of pollution. We'll need to dramatically improve our ability to transit mass to and from cheaply first of course (we're obviously talking many decades into the future).
◧◩◪◨⬒
5. _fizz_+Ud1[view] [source] 2026-02-03 05:28:18
>>advent+cY
> Bezos has been pushing manufacturing-in-space for a long time, as a ideal candidate for what to do in space that you might prefer to not do on Earth. Robotics, AI automation, manufacturing - combo it in space, let the robots manufacture for us in space.

LOL, this seems so far off from the reality of what manufacturing looks like in reality. - sending raw materials up there - service technicians are necessary ALL THE TIME, in fully automated production lines - sending stuff back down

Maybe I lack vision, but data centers in space is a 1000x times better idea and that is already a terrible idea.

◧◩◪◨⬒⬓
6. mike_h+0G1[view] [source] 2026-02-03 09:22:30
>>_fizz_+Ud1
Space manufacturing is a real thing, there are already companies trialling it. The factory is small, satellite sized, and it deorbits when the manufacturing run is done. The results are protected enough for them to be picked up from Earth.

The justification (today) is that you can do very exotic things in zero-G that aren't possible on Earth. Growing ultra-pure crystals and fibre optics and similar.

◧◩◪◨⬒⬓⬔
7. _fizz_+sL1[view] [source] 2026-02-03 10:03:39
>>mike_h+0G1
Ok, that I might buy. If there is a product one can build in zero-G that one cannot build on earth. Especially something like growing crystalls. Sure. But trying to compete with something that can just as well be build on earth on the premise that it will be cheaper to do the same thing just in space is insane.

It's the same issue that I have with data centers in space. I don't think there is any big technical hurdle to send a GPU rack into space and run it there. The problem is that I have a hard time to believe it is cheaper to run a datacenter in space. When you have to compete solely on cost, it will super hard.

◧◩◪◨⬒⬓⬔⧯
8. mike_h+mM1[view] [source] 2026-02-03 10:10:21
>>_fizz_+sL1
I don't think it's insane. It might not work or be competitive but it's not obviously insane.

In a frictionless economy governed by spherical cows it'd be insane. But back here on Earth, AI is heavily bottlenecked by the refusal or inability of the supply chain to scale up. They think AI firms are in a bubble and will collapse, so don't want to be bag holders. A very sane concern indeed. But it does mean that inferencing (the bit that makes money) is constantly saturated even with the industry straining every sinew to build out capacity.

One bottleneck is TSMC. Not much that can be done about that. The other is the grid. Grid equipment manufacturers and CCGT makers like Siemens aren't spinning up extra manufacturing capacity, again because they fear being bag holders when Altman runs out of cash. Then you have massive interconnection backlogs, environmentalists attacking you and other practical problems.

Is it easier to get access to stable electricity supplies in space? It's not inconceivable. At the very least, in space Elon controls the full stack with nearly no regulations getting in the way after launch - it's a pure engineering problem of the sort SpaceX are good at. If he needs more power he can just build it, he doesn't have to try and convince some local government utility to scale up or give him air permits to run generators. In space, nobody can hear you(r GPUs) scream.

[go to top]