zlacker

[return to "xAI joins SpaceX"]
1. gok+h4[view] [source] 2026-02-02 22:06:22
>>g-mork+(OP)
> it is possible to put 500 to 1000 TW/year of AI satellites into deep space, meaningfully ascend the Kardashev scale and harness a non-trivial percentage of the Sun’s power

We currently make around 1 TW of photovoltaic cells per year, globally. The proposal here is to launch that much to space every 9 hours, complete with attached computers, continuously, from the moon.

edit: Also, this would capture a very trivial percentage of the Sun's power. A few trillionths per year.

◧◩
2. rainsf+RA[view] [source] 2026-02-03 00:24:23
>>gok+h4
We also shouldn't overlook the fact that the proposal entirely glosses over the implication of the alternative benefits we might realize if humanity achieved the incredible engineering and technical capacity necessary to make this version of space AI happen.

Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?

This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.

◧◩◪
3. somena+Z91[view] [source] 2026-02-03 04:46:36
>>rainsf+RA
A lot of great inventions we now take for granted initially came with little motivation other than being able to kill each other more effectively. GPS, radar, jet engines, drones, super glue, microwaves, canned food, computers, even the internet. Contrary to the narrative of the internet being about sharing science, ARPANET was pushed by the DoD as a means of maintaining comms during nuclear war. It was then adopted by universities and research labs and started along the trajectory most are more familiar with.

The tale of computers is even more absurd. The first programmable, electric, and general-purpose digital computer was ENIAC. [1] It was built to... calculate artillery firing tables. I expect in the future that the idea of putting a bunch of solar into space to run GPUs for LLMs will probably seem, at the minimum - quaint, but that doesn't mean the story ends there.

[1] - https://en.wikipedia.org/wiki/ENIAC

◧◩◪◨
4. throw0+1p2[view] [source] 2026-02-03 14:30:11
>>somena+Z91
> Contrary to the narrative of the internet being about sharing science, ARPANET was pushed by the DoD as a means of maintaining comms during nuclear war.

[citation needed]

Because according to Bob Taylor, who initially got the funding for what became ARPANET:

> Taylor had been the young director of the office within the Defense Department’s Advanced Research Projects Agency overseeing computer research, and he was the one who had started theARPANET . The project had embodied the most peaceful intentions—to link computers at scientific laboratories across the country so that researchers might share computer resources. Taylor knew theARPANET and its progeny, the Internet, had nothing to do with supporting or surviving war—never did.Yet he felt fairly alone in carrying that knowledge.

> Lately, the mainstream press had picked up the grim myth of a nuclear survival scenario and had presented it as an established truth. When* Time magazine committed the error, Taylor wrote a letter to the editor, but the magazine didn’t print it. The effort to set the record straight was like chasing the wind; Taylor was beginning to feel like a crank.

* https://www.goodreads.com/book/show/281818.Where_Wizards_Sta... § Prologue

> Taylor told the ARPA director he needed to discuss funding for a networking experiment he had in mind. Herzfeld had talked about networking with Taylor a bit already, so the idea wasn’t new to him. He had also visited Taylor’s office, where he witnessed the annoying exercise of logging on to three different computers. And a few years earlier he had even fallen under the spell of Licklider himself when he attended Lick’s lectures on interactive computing.

> Taylor gave his boss a quick briefing: IPTO contractors, most of whom were at research universities, were beginning to request more and more computer resources. Every principal investigator, it seemed, wanted his own computer. Not only was there an obvious duplication of effort across the research community, but it was getting damned expensive. Computers weren’t small and they weren’t cheap. Why not try tying them all together? By building a system of electronic links between machines, researchers doing similar work in different parts of the country could share resources and results more easily. […]

* Wizards § Chapter 1

The first four IMPs were UCLA, SRI, UCSB, and Utah. Then BBN, MIT, RAND, System Development Corp., and Harvard. Next Lincoln Laboratory and Stanford, and by the end of 1970 Carnegie-Mellon University and Case Western Reserve University.

It was only "later in the 1970s" that command and control was considered more (Lukasik):

* https://en.wikipedia.org/wiki/ARPANET#Debate_about_design_go...

But the first two people who get the project going, Taylor and Herzfeld, were about the efficient use of expensive computer resources for research. Look at the firs >dozen sites and they were about linking researchers: the first DoD site wasn't connected until 3-4 years after things go going, and there was nothing classified about it. MILNET didn't occur until 1984:

* https://en.wikipedia.org/wiki/ARPANET#Operation

[go to top]