zlacker

[return to "xAI joins SpaceX"]
1. gok+h4[view] [source] 2026-02-02 22:06:22
>>g-mork+(OP)
> it is possible to put 500 to 1000 TW/year of AI satellites into deep space, meaningfully ascend the Kardashev scale and harness a non-trivial percentage of the Sun’s power

We currently make around 1 TW of photovoltaic cells per year, globally. The proposal here is to launch that much to space every 9 hours, complete with attached computers, continuously, from the moon.

edit: Also, this would capture a very trivial percentage of the Sun's power. A few trillionths per year.

◧◩
2. rainsf+RA[view] [source] 2026-02-03 00:24:23
>>gok+h4
We also shouldn't overlook the fact that the proposal entirely glosses over the implication of the alternative benefits we might realize if humanity achieved the incredible engineering and technical capacity necessary to make this version of space AI happen.

Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?

This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.

◧◩◪
3. esseph+kG[view] [source] 2026-02-03 00:59:02
>>rainsf+RA
This is such a hypebeast paragraph.

Datacenters in space are a TERRIBLE idea.

Figure out how to get rid of the waste heat and get back to me.

◧◩◪◨
4. elihu+xP[view] [source] 2026-02-03 01:59:45
>>esseph+kG
That's not a new problem that no one has dealt with before. The ISS for instance has its External Active Thermal Control System (EACTS).

It's not so much a matter of whether it's an unsolvable problem but more like, how expensive is it to solve this problem, what are its limitations, and does the project still makes economic sense once you factor all that in?

◧◩◪◨⬒
5. hyperb+uZ[view] [source] 2026-02-03 03:14:16
>>elihu+xP
The ISS consumes roughly 90kW. That’s about *one* modern AI/ML server rack. To do that they need 1000 m^2 of radiator panels (EACTS). So that’s the math: every rack needs another square kilometer of stuff put into orbit. Doesn’t make sense to me.
◧◩◪◨⬒⬓
6. jcgril+121[view] [source] 2026-02-03 03:35:42
>>hyperb+uZ
And what happens every time a rack (or node) fails? Does someone go out and try to fix it? Do we just "deorbit" it? How many tons per second of crap would we be burning in the upper atmosphere now? What are the consequences of that?

How do the racks (or nodes) talk to eachother? Radios? Lasers?

What about the Kessler Syndrome?

Not a rocket scientist but 100% agree this sounds like a dead end.

◧◩◪◨⬒⬓⬔
7. elihu+x41[view] [source] 2026-02-03 03:57:35
>>jcgril+121
Communication is a well-understood problem, and SpaceX already has Starlink. They might need pretty high bandwidth, but that's not necessarily much of a problem in space. Latency could be a problem, except that AI training isn't the sort of problem where you care about latency.

I'd be curious where exactly they plan to put these datacenters... In low Earth orbit they would eventually reenter, which makes them a pollution source and you'd have no solar power half the time.

Parking them at the Earth-Sun L1 point would be better for solar power, but it would be more expensive to get stuff there.

◧◩◪◨⬒⬓⬔⧯
8. Walter+Ob1[view] [source] 2026-02-03 05:05:11
>>elihu+x41
> you'd have no solar power half the time

Polar orbit.

[go to top]