https://taranis.ie/datacenters-in-space-are-a-terrible-horri...
I don't have any specialized knowledge of the physics but I saw an article suggesting the real reason for the push to build them in space is to hedge against political pushback preventing construction on Earth.
I can't find the original article but here is one about datacenter pushback:
https://www.bloomberg.com/opinion/articles/2025-08-20/ai-and...
But even if political pushback on Earth is the real reason, it still seems datacenters in space are extremely technically challenging/impossible to build.
Edit: okay Tiangong - but that is not a data center.
That someone could put a data center in space for the price of 100 years of eliminating world hunger doesn’t mean shit.
I don't see those obstacles appearing though.
Figuring out how to radiate a lot of waste heat into a vacuum is fighting physics. Ordinarily we use a void on earth as a very effective _insulator_ to keep our hot drinks hot.
For fuck's sake, TSLA has a P/E of a whopping *392*. There is zero justification for how overvalued that stock is. In a sane world, I should be able to short it and 10x my money, but people are buying into Musk's hype on FSD, Robotaxi, and whatever the hell robot they're making. Even if you expected them to be successes, they'd need to 20x the company's entire revenue to justify the current market cap.
Silicon is way more forgiving than biology. This isn’t an argument for this proposal. But there is no technical connection between humans in space and data centers other than launch-cost synergies.
Radiators should work pretty well, and large solar panels can do double duty as radiators.
Also, curiously, newer GPUs are developed to require significantly less cooling than previous generations. Perhaps not so coincidentally?
The idea itself was proven by NASA with the DC-X but the project was canceled due to funding. Now instead of having NASA run it we SpaceX pay more than we'd ever have paid NASA for the same thing.
DC-X test flight: https://www.youtube.com/watch?v=gE7XJ5HYQW4
It's awesome that Falcon 9 exists and it is great technology but this guy really isn't the one anyone should want in charge of it.
The guy is saying satellite communication is restricted to 1Gbps ffs. SpaceX is way past that.
We have had the tech to do it since the 90's, we just needed to invest into it.
Same thing with Elon Musks hyperloop, aka the atmospheric train (or vactrain) which has been an idea since 1799! And how far has Elon Musks boring company come to building even a test loop?
Yeah, in theory you could build a data center in space. But unless you have a background in the limitations of space engineering/design brings, you don't truly understand what you are saying. A single AI data center server rack takes up the same energy load of 0.3 to 1 international space station. So by saying Elon musk can reasonable achieve this, is wild to anyone who has done any engineering work with space based tech. Every solar panel generates heat, the racks generate heat, the data communication system generates, heat... Every kW of power generated and every kW of power consumes needs a radiator. And it's not like water cooling, you are trying to radiate heat off into a vacuum. That is a technical challenge and size, the amount of tons to orbit needed to do this... Let alone outside of low earth... Its a moonshot project for sure. And like I said above, Elon musk hasnt really followed through with any of his moonshots.
Umm, if this is the point, I don't know whether to take rest of author's arguments seriously. Solar only works certain time of the day and certain period of year on land.
Also there is so limited calculations for the numbers in the article, while the article throws of numbers left and right.
The ISS is powered by eight Solar Array Wings. Each wing weighs about 1,050kg. The station also has two radiator wings with three radiator orbital replacement units weighing about 1,100kg each. That's about 15,000 kg total so if the ISS can power three racks, that's 5,000kg of payload per rack not including the rack or any other support structure, shielding, heat distribution like heat pipes, and so on.
Assuming a Falcon Heavy with 60,000 kg payload, that's 12 racks launched for about $100 million. That's basically tripling or quadrupling (at least) the cost of each rack, assuming that's the only extra cost and there's zero maintenance.
https://healthpolicy-watch.news/the-human-cost-one-year-afte...
It's curious that we live in a world in which I think the majority of people somehow think this ISN'T complicated.
Like, have we long since reached the point where technology is suitably advanced to average people that it seems like magic, where people can almost literally propose companies that just "conjure magic" and the average person thinks that's reasonable?
I don't get why we aren't building mixed use buildings, maybe the first floor can be retail and restaurants, the next two floors can be data centers, and then above that apartments.
This doesn’t pass the smell test given that the cost of launch with spacex is lower than it ever was under ULA.
NASA has never been about cheap launches, just novel technology. Look at the costs of Saturn and SLS to see what happens when they do launch.
That makes radiating a much more practical approach to cooling it.
The great thing about your argument is that it can be used in any circumstance!
Cooling car batteries, nope can't possibly work! Thermodynamics!
Refrigerator, are you crazy? You're fighting thermodynamics!
Heat pump! Haah thermodynamics got you.
The same goes for LEO!
Right now only upsides an expensive satellite acting as a server node would be physical security and avoiding various local environmental laws and effects
I'd love to live in a dense city. My office within waking distance. A Cafe in my apartment building, etc.
https://blog.google/innovation-and-ai/technology/research/go...
You are missing some pretty important upsides.
Lower latency is a major one. And not having to buy land and water to power/cool it. Both are fairly limited as far as resources go, and gets exponentially expensive with competition.
The major downside is, of course, cost. In my opinion, this has never really stopped humans from building and scaling up things until the economies of scale work out.
> connect to other satellites and earth
If only there was a large number of satellites in low earth orbit and a company with expertise building these ;)
"I can buy a server"
"We can put things in space"
"What do you mean I can't get a server in space?!"Still there will be a lot of engineering problems to solve.
2-3 years seems very short, but 10 years seems long to me.
"We specialize in making the impossible merely late"
These satellites will be in a sun-synchronous orbit, so only close to any given location on Earth for a fraction of the day.
It's interesting that you bring that up as a benfit. If waterless cooling (i.e. closed cooling system) works in space, wouldn't it work even better on Earth?
Your examples prove our case. You just must not understand how they work
There’s also fairly clear distinction with how insane Elons plan has become since the first plans he laid for Tesla and SpaceX and the plans he has now. He has clearly become a megalomaniac.
Funnily enough, some of the things people said about Tesla is coming true, because Elon simply got bored of making cars. It’s now plausible that Tesla may die as a car company which I would not have imagined a few years ago. They’re arguably not even winning the self driving and robotics race.
Currently SpaceX have managed to land the booster only, not the rocket itself, if you are thinking about Starship. And reusability of said rocket is also missing (collecting blown up pieces from the bottom of the ocean doesn't count!).
Yes, running hotter will cause more energy to be radiated.
but
These parts are not at all designed to radiate heat - just look at the surface area of the package with respect to the amount of power they consume.
Then move to one?
"Minor" cooling changes, for a radically different operating environment that does not even have a temperature, is a perfect insulator for conduction and convection, and will actively heat things up via incoming radiation? "Minor" ? Citation very much lacking.
At 60 metric tons, you're expending all cores and only getting to LEO. These probably shouldn't be in LEO because they don't need to be and you probably don't want to be expending cores for these launches if you care about cost.
The real problem typically isn't weight, it's volume. Can you fit all of that in that fairing? It's onli 13m long by 5m diameter...
The Starship stack? Not so much. It's plagued, and will continue to be plagued, by endless problems. BO will beat them with NG.
When someone lives in opulence while the rest of the world burns, the rest of the world doesn’t sit idly.
Where I live, Norway, we've seen that:
1) The data centers don't generate the numbers of jobs they promise. Sure, during building phase, they do generate a lot of business, but during operations and maintenance phase, not so much. Typically these companies will promise hundreds of long-term jobs, while in reality that number is only a fraction.
2) They are extremely power hungry, to the point where households can expect to see their utility bill go up a non-trivial amount. That's for a single data center. In the colder climate areas where data centers are being promoted, power infrastructure might not be able to handle the centers (something seen in northern Norway, for example) at a larger scale, due to decades of stagnation.
3) The environmental effects have come more under scrutiny. And, unfortunately for the companies owning data centers, pretty much all cold-climate western countries have stringent environmental laws.
> [Kenyan Economist] Shikwati: … for God’s sake, please just stop.
> SPIEGEL: Stop? The industrialized nations of the West want to eliminate hunger and poverty.
> Shikwati: Such intentions have been damaging our continent for the past 40 years. If the industrial nations really want to help the Africans, they should finally terminate this awful aid. The countries that have collected the most development aid are also the ones that are in the worst shape. Despite the billions that have poured in to Africa, the continent remains poor.
https://www.aei.org/carpe-diem/kenyan-economics-expert-devel...
that's an arbitrary standard set by you.
His investors are quite happy with his success rate. He is constantly building new stuff. And as a consumer who has had great experience with every product I've bought, so am I
When I lived on a chilling grid, my summer AC bill was around $80, while friends whose buildings weren't connected paid $200+.
His investors are not investing because of his success rate in delivering on his promises. His investors are investing exclusively because they believe that stock they buy now will be worth more tomorrow. They all know that's most likely not because Elon delivers anything concrete (because he only does that in what, 20% of cases?), but because Elon rides the hype train harder tomorrow. But they don't care if it's hype or substance, as long as numbers go up.
Elon's investors are happy with his success rate only in terms of continuously generating hype. Which, I have to admit, he's been able to keep up longer now than I ever thought possible.
I'm probably an outlier though.
And fact is Musk is building a lot of stuff of real substance. The hype to substance ratio isn't quite as important as some choose to beleive
Elizabeth Holmes (Theranos) and a lot of ex-crypto-bros (fraudsters) would agree.
"Exceptional hyping skills" is (today) possibly a more derogatory term than you're expecting.
> And fact is Musk is building a lot of stuff of real substance.
I think the point others are making is this is a more accurate description of Musk ~10 years ago. In the past 5 years its been what, the cybertruck?
https://www.youtube.com/watch?v=3VJT2JeDCyw
If these things were so safe the rich should build them next to their homes.
I wouldn't put cybertruck in the win column personally
Casually six times more than it has ever lifted.
Also these days stock market doesn't have much relation to real state of economy - it's in many ways a casino.
Being ambitious is good to an extent but you need to be able to deliver to keep a company healthy. Right now, if you’re a sharp engineer you are looking at Tesla’s competition if you want to work on a project which doesn’t get cancelled (like it’s cars) and the stock price being hyped to the moon means that options aren’t going to be as competitive.
Musk's ratio is such that his utterances are completely free from actionable information. If he says something, it may or may not happen and even if it does happen the time frame (and cost) is unlikely to be correct.
I don't get why anyone would invest their money on this basis.
Most of Tesla's revenue derives from Model Y and FSD subs. I agree that Cybertruck was a marketing ploy. Don't think it was ever intended to be materially revenue generating.
Lets go through this one by one
[1]Robotaxi. Someone just drove coast to coast USA fully on autopilot. I drive my tesla every day, and i literally NEVER disengage autopilot. It gets me to work and back home without fail, to the grocery store, to literally anywhere i need. Whats not full self driving about that? I got in two crashes before i got my Tesla cause i was a dumb teen, but i'm sure my Tesla is a much better driver than my younger sister. Politically it's not FSD, but in reality, it has been for a while.
[2] Optimus has gone through three revisions and has hand technology that is 5+ years ahead of the competition. Even if they launched it as a consumer product now, i'm sure a million people would buy it just as a cool toy/ gadget. AKA a successfull product.
[3] Lunar Lander Starship, a fully reusable, 2 stage rocket that has gone through 25 revisions and is 95% flight proven and has even deployed dummy starlinks. 10+ years ahead of everyone except maybe stoke.
[4]Space Datacenter Have you ever used starlink? They have all the pieces they need... Elon build a giant datacenter in 6 monmths when it takes 3-4 years usually. He has more compute than anybody and Grok is the most intelligent AI by all the metrics outside googles. Combine that with Starship, which can launch 10X the capacity for 10% of the cost, and what reason do you have to doubt him here?
Granted... it always takes him longer than he says, but he always eventually comes through.
The author uses the power capacity of the ISS's solar panels as a point of comparison, but SpaceX has already successfully deployed many times that capacity in Starlink satellites[1] without even needing to use Starship, and obviously the heat dissipation problem for those satellites has already been solved so there's little point in hand-wringing about that.
The author also worries about ground communication bandwidth, claiming it is "difficult to get much more than about 1Gbps reliably", which seems completely ignorant of the fact that Starlink already has a capacity much greater than that.
The only unsolved technical challenge I see in that article is radiation tolerance. It's unclear how big of a problem that will actually be in practice. But SpaceX probably has more experience with that than anyone other than perhaps NASA so if they think it can be done I don't see much reason to doubt them.
Ultimately I think this is doable from a technical perspective, it's just a question of whether it will be economical. Traditional wisdom would say no even just due to launch costs, but if SpaceX can get Starship working reliably that could alter the equation a lot. We'll see. This could turn out to be a boondoggle, or it could be the next Starlink. The prospect of 24/7 solar power with no need for battery storage or ground infrastructure does seem tempting.
[1]: https://www.reddit.com/r/spacex/comments/zzwpue/with_starlin...
Where's the source for this?
Your link here isn't really a fair comparison, and also you're still short a factor of 10x. Starlink has deployed 50x the ISS's solar cap across its entire fleet (admittedly 3 years ago); the author's calcs are 500x the ISS for one datacenter.
> and obviously the heat dissipation problem for those satellites has already been solved so there's little point in hand-wringing about that.
This reasoning doesn't make any sense to me, the heat dissipation issues seem very much unresolved. A single Starlink satellite is using power in the order of watts, a datacenter is hitting like O(1/10) of gigawatts. The heat dissipation problem is literally orders of magnitude more difficult for each DC than for their current fleet. This is like saying that your gaming PC will never overheat because NetGear already solved heat dissipation in their routers.
> The author also worries about ground communication bandwidth, claiming it is "difficult to get much more than about 1Gbps reliably", which seems completely ignorant of the fact that Starlink already has a capacity much greater than that.
Don't their current satellites have like 100Gbps capacity max? Do you have any idea how many 100Gbps routers go into connecting a single datacenter to the WAN? Or to each other (since intrahall model training is table stakes these days). They have at most like O(1)Pbps across their entire fleet (based on O(10K) satellites deployed and assuming they have no failover protection). They would need to entirely abandon their consumer base and use their entire fleet to support up/down + interconnections for just 2 or 3 datacenters. They would basically need to redeploy a sizeable chunk of their entire fleet every time they launched a DC.
I mean a DC needs a lot of infrastructure and space. I think the real estate economics in places where people want to live, shop, and eat preclude the kinds of land usage common in DC design. Keep in mind that most DCs are actually like 4 or 5 datahalls tethered together with massive fiber optic networks.
Also people prefer to build parking in those levels that you're proposing to put DCs into.
So 3 years ago they managed to get to 10% of the power budget of one data center by accident, using satellites not explicitly designed for that purpose, using a partially reusable launch platform with 1/10th the payload capacity of Starship. My point is they've already demonstrated they can do this at the scale that's needed.
> A single Starlink satellite is using power in the order of watts
Then why does each satellite have a 6 kW solar array? Re-read that post I linked; the analysis is pretty thorough.
> Don't their current satellites have like 100Gbps capacity max?
Gen 3 is reportedly up to 1 Tbps ground link capacity, for one satellite.[1] There will be thousands.
> Do you have any idea how many 100Gbps routers go into connecting a single datacenter to the WAN? Or to each other (since intrahall model training is table stakes these days).
Intra-satellite connections use the laser links and would not consume any ground link capacity.
You're also ignoring that this is explicitly being pitched as a solution for compute-heavy workloads (AI training and inference) not bandwidth-heavy workloads.
It is our money and we're not obligated to give it away if we think it's needed for something else. I'd note though, that in terms of the budget, USAID was like change in the couch cushions and nothing else in the world was even close in terms of lives saved per dollar. Why the man tasked with saving the government trillions of dollars went there at all was nonsensical to begin with.
Nevertheless, it is fully within our rights to pull back aid if we (collectively) decide it's best thing to do. But the only legal way to do that is through the democratic process. Elected can legislators take up the issue, have their debates, and vote.
If congress had canceled these programs through the democratic process, there almost certainly would've been a gradual draw down. Notice and time would be given for other organizations to step in and provide continuity where they could.
And since our aid programs had been so reliable and trusted, in many cases they became a logistics backbone for all sorts of other aid programs and charities. Shutting it all down so abruptly caused widespread disruption far beyond own aid programs. Food rotting in warehouses as people starved. Medications sitting in warehouses while people who needed them urgently died. The absolute waste of life and resources caused by the sudden disruption of the aid is a true atrocity.
Neither Elon or Trump had legal authority to unilaterally destroy those programs outside of the democratic process the way they did, so they are most directly morally responsible for the resulting death.
To add insult-to-injury, Elon was all over twitter justifying all of it with utterly deranged, insane conspiracy theories. He was either lying cynically or is so far gone mentally that he believed them. I'm not sure which is worse.
How was it by accident? You make it sound like it was easy rather than a total revolution of the space industry? To achieve 1/10th of what they would need for a single DC (and most industry leaders have 5 or 6)? Demonstrating they could generate power at DC scale would be actually standing up a gigawatt of orbital power generation, IMO. And again, this is across thousands of units. They either have to build this capacity all in for a single DC, or somehow consolidate the power from thousands of satellites.
> Then why does each satellite have a 6 kW solar array? Re-read that post I linked; the analysis is pretty thorough.
You're right, my bad. So they're only short like 6 orders of magnitude instead of 9? Still seems massively disingenuous to conclude that they've solved the heat transfer issue.
> Gen 3 is reportedly up to 1 Tbps ground link capacity, for one satellite.[1] There will be thousands.
Okay I'll concede this one, they could probably get the data up and down. What's the latency like?
so if the cybertruck is not a win, what in the last 5 years is?
Didn't Tesla just have a terrible 2025, with European sales plunging due to the stigma of owning a swasticar?
I say by accident because high power capacity wasn't a design goal of Starlink, merely a side effect of deploying a communications network.
> My bad. So they're only short like 6 orders of magnitude instead of 9?
No, they're 1 order of magnitude off. (22 MW total capacity of the constellation vs your bar of 100 MW for a single DC.) Again, 3 years ago, using an inferior launch platform, without that even being a design goal.
> What's the latency like?
Starlink latency is quite good, about 30ms round trip for real-world customers on the ground connecting through the constellation to another site on the ground. Sun synchronous orbit would add another ms or two for speed of light delay.
AFAIK nobody outside SpaceX has metrics on intra-satilite latency using the laser links but I have no reason to think it would be materially worse than a direct fiber connection provided the satellites aren't spread out too far. (Starlink sats are very spread out, but you obviously wouldn't do that for a data center.)
Why on earth would you compare their entire fleet to one project? Power generation trivially parallelizes only if you can transmit power between generation sites. Unless they've figure out how to beam power between satellites the appropriate comparison is 6Kw to 100Mw. And again, the generation is the easy side; the heat dissipation absolutely does not parallelize so that also needs to go by 3-5 orders of mag.
And also: radiation. Terrestrial GPUs are going to be substantially more power and heat efficient than space-based ones (as outlined in TFA). All this for what benefits? An additional 1.4x boost in solar power availability? There's simply no way the unit economics of this work out. Satellite communications have fundamental advantages over terrestrial networks if you can get the launch economics right. Orbital DCs have only the solar availability thing; everything else is cheaper and easier on land.
I already gave my thoughts on radiation and economics in my original comment. I agree those could be significant challenges, but ones SpaceX has a plausible path to solving. Starship in particular will be key on the economic side; I find it very unlikely they'll be able to make the math work with just Falcon 9. Even with Starship it might not work out.
And it's not just a 1.4x boost in solar power availability. You also eliminate the need for batteries to maintain power during the night or cloudy days (or cloudy weeks), and the need for ground infrastructure (land, permitting, buildings, fire suppression systems, parking lots, physical security, utility hook-up, etc).
Starlink is growing rapidly.
Starship has been making steady progress.
Neuralink is helping ~12 real people with spinal cord injuries/ALs.
Optimus seems to be making progress.
Tesla is beginning to roll out robotaxis without safety drivers.
I was being charitable on the back of the napkin math.
But even if share price is the metric for success, 33.6% over 5 years is like 6% compounded annually, which is okay I guess? [0]
[0] https://www.investopedia.com/magnificent-seven-stocks-840226...
Hmm, surely the radiator can run at arbitrary temperatures w.r.t. the objects being cooled? I'm assuming heat pump etc is already part of the design.
The SEC.
>he certainly goes to court more than your average person
Yes because he sues a lot of entities for silly things such as some advertisers declining to buy ads that display next to pro-hitler posts, or news outlets for posting unaltered screenshots of a social media site he acquired.
Then you picked the wrong thread to insert yourself, it's literally about that.
Which is funny, there are multiple other replies to you, explaining at length that while your ideas are physically possible, they are completely impractical. And yet you think they still could be "minor".
Optimists are either rich, or destitute. And though you probably hear more about the richer parts, that doesn't mean they're more common.