> The company only lost six of the 855 submerged servers versus the eight servers that needed replacement (from the total of 135) on the parallel experiment Microsoft ran on land. It equates to a 0.7% loss in the sea versus 5.9% on land.
6/855 servers over 6 years is nothing. You'd simply re-launch the whole thing in 6 years (with advances in hardware anyways) and you'd call it a day. Just route around the bad servers. Add a bit more redundancy in your scheme. Plan for 10% to fail.
That being said, it's a complete bonkers proposal until they figure out the big problems, like cooling, power, and so on.
Underwater pods are the polar opposite of space in terms of failure risks. They don't require a rocket launch to get there, and they further insulate the servers from radiation compared to operating on the surface of the Earth, rather than increasing exposure.
(Also, much easier to cool.)
But they didn't say just "gravity", they said "gravity well".
> "First, let us simply define what a gravity well is. A gravity well is a term used metaphorically to describe the gravitational pull that a large body exerts in space."
- https://medium.com/intuition/what-are-gravity-wells-3c1fb6d6...
So they weren't suggesting that it will be big enough to get past some boundary below which things don't have gravity, just that smaller things don't have enough gravity to matter.
"Large" is almost meaningless in this context. Douglas Adams put it best
> Space is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it's a long way down the road to the chemist, but that's just peanuts to space.
From an education site:
> Everything with mass is able to bend space and the more massive an object is, the more it bends
They start with an explanation of a marble compared to a bowling ball. Both have a gravity well, but one exerts far more influence
https://www.howitworksdaily.com/the-solar-system-what-is-a-g...