What I see is semi-poverty mindset among very smart people who appear to be treated in a way such that the winners get promotion, and everyone else is fired. That this sort of analysis with ML is useful for massive data sets at scale, where 90% is a lot of accuracy, not at all for the small sets of real world, human-scale problems where each result may matter a lot. The amount of years of training that these researchers had to go through, to participate in this apparently ruthless environment, are certainly like a lottery ticket, if you are in fact in a game where everyone but the winner has to find a new line of work. I think their masters live in Redmond, if I recall.. not looking it up at the moment.
Nothing in a Transformer's perplexity in predicting the next token tells you that at some point it suddenly starts being able to write flawless literary style parodies, and this is why the computer art people become virtuosos of CLIP variants and are excited by new ones, because each one attacks concepts in slightly different ways and a 'small' benchmark increase may unlock some awesome new visual flourish that the model didn't get before.
Sure, it's only 2%, but if it's on a problem where everyone else has been trying to make that improvement for a long time, and that improvement means big economic or social gains, then it's worth it.