Cross-plane optical links would have a trickier tracking problem.
While there's no explicit mention of same-plane vs cross-plane optical links, I assume that the first time people have a public cross-plane optical link, they will make a big deal out of it. :)
The article also mentions that SpaceX would need to do further study before using laser links between satellites and ground stations-- this kind of optical link would require both more angular tracking and probably atmospheric correction as well.
Is there rough pointing, followed by some rastering, until the sensor gets a hit? Maybe with some slight beam widening first? My assumption is that you would want exactly one laser, one sensor module, and probably a fixed lens on each? Is the sensor something like a 2x2 array, or pie with three pieces, to allow alignment? Or is it one big sensor that uses perturb and observe type approach to find the middle?
Also, is there anything special about the wavelengths selected? Are the lasers fit to one of the Fraunhofer lines? 760nm seems like a good choice?