1) Not unique to exponentiation, it's also true of 281474976710656 + 79766443076872509863361.
2) This is a vague notion and you're going to have to deal with the problem of the smallest number that isn't expressible (I believe it might be the same as "feasible numbers", and there's a whole theory here)
3) the whole tenor of his critique suggests something a bit more foundational (predicativity, I guess...?)
As you say, the notion of a "real number" is vague without the details (which I'm not really able to describe properly, because I'm only summarizing something I vaguely understand. I'm not an expert on mathematical logic). The best source is Nelson's book "Predicative Arithmetic", https://web.math.princeton.edu/~nelson/books/pa.pdf In the book, he defines what he means by a real number, and shows why exponentation doesn't satisfy the property that if a^X is a real number, then a^(X+1) is.