The thing that makes it particularly misleading is that models that do transcription to lowercase and then use inverse text normalization to restore structure and grammar end up making a very different class of mistakes than Whisper, which goes directly to final form text including punctuation and quotes and tone.
But nonetheless, they're claiming such a lower error rate than Whisper that it's almost not in the same bucket.
There's a reason that quite a lot of good transcribers still use V2, not V3.