zlacker

[parent] [thread] 3 comments
1. Punchy+(OP)[view] [source] 2026-02-04 08:54:51
just take cost of getting kg in space and compare it to how much solar panel will generate

Current satellites get around 150W/kg from solar panels. Cost of launching 1kg to space is ~$2000. So we're at $13.3(3)/Watt. We need to double it because same amount need to be dissipated so let's round it to $27

One NVidia GB200 rack is ~120kW. To just power it, you need to send $3 240 000 worth of payload into space. Then you need to send additional $3 106 000 (rack of them is 1553kg) worth of servers. Plus some extra for piping

replies(1): >>cmenge+z8
2. cmenge+z8[view] [source] 2026-02-04 10:01:26
>>Punchy+(OP)
Over 10 years ago, the best satellites had 500W/kg [2]. Modern solar panels that are designed to be light are at 200g per sqm [1]. That's 5sqm per kg. One sqm generates ca. 500W. So we're at 2.5kW per kg. Some people claim 4.3kW/kg possible.

Starship launch costs have a $100/kg goal, so we'd be at $40 / kW, or $4800 for a 120kW cluster.

120kW is 1GWh annually, costs you around $130k in Europe per year to operate. ROI 14 days. Even if launch costs aren't that low in the beginning and there's a lot more stuff to send up, your ROI might be a year or so, which is still good.

[1] - https://www.polytechnique-insights.com/en/columns/space/ultr... [2] - https://space.stackexchange.com/questions/12824/lightest-pos...

replies(1): >>mkespe+If
◧◩
3. mkespe+If[view] [source] [discussion] 2026-02-04 10:57:22
>>cmenge+z8
What if you treat that launch costs goal as just a marketing promise. Invest in reality, not in billionaire's fantasies.
replies(1): >>cmenge+fX
◧◩◪
4. cmenge+fX[view] [source] [discussion] 2026-02-04 15:25:58
>>mkespe+If
> What if you treat that launch costs goal as just a marketing promise.

Then it's roughly 10x-15x and still works.

> Invest in reality, not in billionaire's fantasies.

SpaceX has dramatically reduced payload cost already. How is that a fantasy?

[go to top]