"More efficient cooling architecture taking advantage of higher ΔT in space"
My bold claim: The cost of cooling will not be $0. The cost of launching that cooling into space will also not be $0. The cost of maintaining that mechanically complex cooling in space will not be $0.
They then throw in enough unrealistic calculations later in the "paper" to show that they thought about the actual cost at least a little bit. Apparently just enough to conclude that it's so massive there's no way they're going to list it in the table. Table 1 is pure fantasy.
I will not re-read them, but from what I recall from those threads is numbers don't make sense. Something like:
- radiators the multiple square kilometers in size, in space;
- lifting necessary payloads to space is multiples of magnitudes more than we have technology/capacity as the whole world now;
- maintanence nightmare. yeah you can have redundancy, but no feasable way to maintain;
- compare how much effort/energy/maintenance is required to have ISS or Tiangong space stations - these space datacenters sound ridiculous;
NB: I would be happy to be proven wrong. There are many things that are possible if we would invest effort (and money) into it, akin to JFK's "We choose to go to the Moon" talk. Sounded incredible, but it was done from nearly zero to Moon landing in ~7 years. Though as much as I udnerstand - napkin math for such scale of space data centers seem to need efforts that are orders or magnitude more than Apollo mission, i.e. launching Saturn V for years multiple times per day. Even with booster reuse technology this seems literally incredible (not to mention fuel/material costs).
(1) There are orbital arrangements that allow satellites to stay close together with minimal orbital corrections. Scott Manley mentioned this in one of his videos.