putting 1KW of solar on land - $2K, putting it into orbit on Starship (current ground-based heavy solar panels, 40kg for 4m2 of 1KW in space) - anywhere between $400 and $4K. Add to that that the costs on Earth will only be growing, while costs in space will be falling.
Ultimately Starship's costs will come down to the bare cost of fuel + oxidizer, 20kg per 1kg in LEO, i.e. less than $10. And if they manage streamlined operations and high reuse. Yet even with $100/kg, it is still better in space than on the ground.
And for cooling that people so complain about without running it in calculator - >>46878961
>2. The maintenance costs are higher because the lifetime of satellites is pretty low
it will live those 3-5 years of the GPU lifecycle.
And maintenance and replacing parts and managing flights and ... You're trying to yadda-yadda so much opex here!
A datacenter costs ~$1000/ft^2. How much equipment per square foot is there? say 100kg (1 ton per rack plus hallway). Which is $1000 to put into orbit on Starship at $100/kg. At sub-$50/kg, you can put into orbit all the equipment plus solar panels and it would still be cheaper than on the ground.
That would make your solar panel (40kg) around $60K to put into space.
Even being generous and assuming you could get it to $100 per kg that's still $4000
There's a lot of land in the middle of nowhere that is going to be cheaper than sending shit to space.
What starship? The fantasy rocket Musk has been promising for 10 years or the real one that has thus far delivered only one banana worth of payload into orbit?
That is exactly what you do - just like with Starlink - toss out the panels with attached GPUs, laser transmitter and small ion drive.
with the GPU costing the same, it would only double the capex.
>Even being generous and assuming you could get it to $100 per kg that's still $4000
noise compare to the main cost - GPUs.
>There's a lot of land in the middle of nowhere that is going to be cheaper than sending shit to space.
Cheapness of location of your major investment - GPUs - may as well happen to be secondary to other considerations - power/cooling capacity stable availability, jurisdiction, etc.
> or the real one that has thus far delivered only one banana worth of payload into orbit?
once it starts delivering real payloads, the time for discussions will be no more, it will be time to rush to book your payload slot.
You meet this with "well, once it works, it'll be amazing and you'll be queuing up"? How very very musky!
What a cult.
The known scammer guy? Like these ideas wouldn't pass the questions at the end of a primary school presentation.
(I'm ignoring installation costs etc. because actually creating the satellites is ignored here, too)
Yes, only doubling the capex. With the benefits of, hmm, no maintenance access and awful networking?
This is the big thing, but Elon's child porn generator in orbit will be subject to US jurisdiction, just as much as if they were in Alaska. I guess he can avoid state law.
If jurisdiction is key, you can float a DC in international waters on a barge flying the flag of Panama or similar flag of convenience which you can pretty much buy at this scale. Pick a tin-pot country, fling a few million to the dictator, and you're set - with far less jurisdiction problems than a US, Russia, France launched satellite.
However, with Starship SpaceX has both done more and less than putting a banana in orbit. Less, because it's never once been a true orbit; more, because these are learn-by-doing tests, all the reporting seems to be in agreement that it could already deliver useful mass to orbit if they wanted it to.
But without actually solving full reusability for the upper stage, this doesn't really have legs. Starship is cheap enough to build they can waste loads of them for this kind of testing, but not cheap enough for plans such as these to make sense if they're disposable.
You'll note that there is still a frame that it gets unfolded with and that you've got the additional mechanical apparatus to do the unfurling (and the human there to fix it if there are problems.
Again, you'll note that there is frame material there.
You don't have a sheet of glass on it, but space doesn't give you the mass savings you think it does.
Those are cutting edge tech (designed to work at Jupiter's distance) and that's about 40 m^2 of space (ten times more than you're describing) and they mass 176 kg ( https://doi.org/10.1007/s11214-025-01190-6 ). If we assume that scales down linearly, the cutting edge technology for solar panels is 20kg for 4m^2 which is more than your estimates. ... And they have problems and can fail to deploy. https://spacenews.com/cygnus-solar-array-fails-to-deploy/ https://spaceflightnow.com/news/n1105/25telstar14r/index.htm... https://www.nasa.gov/history/50-years-ago-skylab-2-astronaut... https://ntrs.nasa.gov/api/citations/20210020397/downloads/Al...
You'll note that the Cygnus used the same design as Lucy, though smaller.
https://en.wikipedia.org/wiki/Cygnus_(spacecraft)
> Starting with the Enhanced variant, the solar panels were also upgraded to the UltraFlex, an accordion fanfold array, and the fuel load was increased to 1,218 kilograms (2,685 lb).
Digging more into Ultra Flex, https://www.eng.auburn.edu/~dbeale/ESMDCourse/Site%20Documen...
> Specific performance with 27% TJ cells: >150 W/kg BOL & > 40 kW/m3 BOL
So there's your number. 150 W/kg of solar panel array. 1 kW is about 7 kg.
They're not cheap.
https://spacenews.com/36576ousted-from-first-orion-flight-ci...
> In 2011, Orbital replaced Dutch Space on the project and gave ATK’s space components division, which was already supplying the substrates for Dutch Space’s Orion solar panels, a $20 million deal to provide UltraFlex arrays for later Cygnus flights.
There’s so much overhead you’re hand waving away to make your numbers work.