For solar panels:
Assuming area of 1000 square meters (30m x 30m square), solar irradiance of 1 kW/m^2, efficiency of 0.2. As a result power is 200 kW.
For radiators:
Stefan-Boltzmann constant 6E-8, temperature difference of 300 K, emissivity of one, we get total radiator power 1000 x 6E-8 x 300^4 = 486 kW.
The radiator number is bigger so the radiator could be smaller than the solar panels and could still radiate away all the heat. With caveats.
Temperature difference in the radiator is the biggest open question, and the design is very sensitive to that. Say if your chips run at 70 C (340 K), what is the cool temperature needed to cool down to, what is the assumed solar and earth flux hitting the radiator, depends on geometry and so on. And then in reality part of the radiator is cooler and radiates way less, so most of the energy is radiated from the hot part. How low do you need to get the cool end temperature to, in order to not fry your chips? I guess you could run at very high flow rates and small temperature deltas to minimize radiator size but then rest of the system becomes heavier.
If you think of a big ball of droplet mist. From the point of view of a droplet in the center, it gets heat radiation from all the droplets around it. It can only radiate heat to black sky it sees, and it might be none, it's "sky" is just filled by other hot droplets. So it doesn't cool at all.
The total power radiated can't exceed the proportion to the macro surface area with tricks.