And I think this would deliver a slight level of protection from the BMC: tampering with the firmware image or key enrollment / secure boot state _should_ both break the UEFI root of trust and alter the PCR state and break everything downstream. Of course, all UEFI implementations are holier than Swiss cheese and there are probably a lot of ways to use the BMC to dump or modify memory post-boot anyway, but it does do something.
And Secure Boot is implemented in, and configured by, the firmware that the BMC can overwrite at its whim while entirely bypassing all the fancy CPU-hardware and SMM protections that are supposed to prevent writing arbitrary data to it.
To the extent that a mechanism not controlled by firmware will detect such an attack and extend PCRs accordingly before executing a single instruction from the compromised flash chip, it might partially mitigate attacks. But that part isn’t Secure Boot.