If an LLM learned something when you gave it commands, it would probably be reflected in some adjusted weights in some of its operational matrix. This is true of human learning, we strengthen some neural connection, and when we receive a similar stimuli in a similar situation sometime in the future, the new stimuli will follow a slightly different path along its neural pathway and result in a altered behavior (or at least have a greater probability of an altered behavior). For an LLM to “learn” I would like to see something similar.
Admittedly, you have to wrap LLMs to with stuff to get them to do that. If you want to rewrite the rules to excluded that then I will have to revise my statement that it is "mostly, but not completely true".
:-P
I think SSR schedulers are a good example of a Machine Learning algorithms that learns from it’s previous interactions. If you run the optimizer you will end up with a different weight matrix, and flashcards will be schedule differently. It has learned how well you retain these cards. But an LLM that is simply following orders has not learned anything, unless you feed the previous interaction back into the system to alter future outcomes, regardless of whether it “remembers” the original interactions. With the SSR, your review history is completely forgotten about. You could delete it, but the weight matrix keeps the optimized weights. If you delete your chat history with ChatGPT, it will not behave any differently based on the previous interaction.