I do not expect to go through the process I just described for more than a few hours a year, so I don't think the net loss to my time is huge. I think that the most relevant counterfactual scenario is that I don't learn anything about how these things work at all, and I cope with my problem being unfixed. I don't think this is unusual behavior, to the degree that it's I think a common point of humor among Linux users: https://xkcd.com/963/ https://xkcd.com/456/
This is not to mention issues that are structurally similar (in the sense that search is expensive but verification is cheap, and the issue is generally esoteric so there are reduced returns to learning) but don't necessarily have anything to do with the Linux kernel: https://github.com/electron/electron/issues/42611
I wonder if you're arguing against a strawman that thinks that it's not necessary to learn anything about the basic design/concepts of operating systems at all. I think knowledge of it is fractally deep and you could run into esoterica you don't care about at any level, and as others in the thread have noted, at the very least when you are in the weeds with a problem the LLM can often (not always) be better documentation than the documentation. (Also, I actually think that some engineers do on a practical level need to know extremely little about these things and more power to them, the abstraction is working for them.)
Holding what you learn constant, it's nice to have control about in what order things force you to learn them. Yak-shaving is a phenomenon common enough that we have a term for it, and I don't know that it's virtuous to know how to shave a yak in-depth (or to the extent that it is, some days you are just trying to do something else).
But knowing the involved domain and some basic knowledge is easy to do and more than enough to quickly know where to do a deep dive. Instead of relying on LLMs that are just giving plausible mashup on what was on their training data (which is not always truthful).