Actually I don't have any intuition for why that's wrong, except that if we catenate the rows into one long row then the picture can be considered as a number 307200 digits long in base 256, and then I see that it could represent 256^307200 possible different values. Which is a lot: https://www.wolframalpha.com/input?i=256%5E307200
The number of possible pictures is indeed 256^307200, which is an unfathomably larger number than 78 million. (256 possible values for the first pixel * 256 possible values for the second pixel * 256 possi...).
https://images.lsnglobal.com/ZFSJiK61WTql9okXV1N5XyGtCEc=/fi...
if there were only 78 million possible pictures, how could that portrait be so recongizably one specific person? wouldnt that mean that your entire picture space wouldnt even be able to fit a single portrait of everyone in Germany?
> "if there were only 78 million possible pictures, how could that portrait be so recongizably one specific person? wouldnt that mean that your entire picture space wouldnt even be able to fit a single portrait of everyone in Germany?"
It's not intuitive that "a 640x480 computer picture must be able to fit a single portrait of everyone in Germany"; A human couldn't check it, a human couldn't remember 78 million distinct pictures, look through them, and see that they all look sufficiently distinct and at no point is it representing 50k people with one picture; human attention and memory isn't enough for that.
I’m fond of derangements and their relationship with permutations, which contain a factor of e.