> As conduction and convection to the environment are not available in space, this means the data center will require radiators capable of radiatively dissipating gigawatts of thermal load. To achieve this, Starcloud is developing a lightweight deployable radiator design with a very large area - by far the largest radiators deployed in space - radiating primarily towards deep space...
They claim they can radiate "633.08 W / m^2". At that rate, they're looking at square kilometers of radiators to dissipate gigawatts of thermal load, perhaps hectares of radiators.
They also claim that they can "dramatically increase" heat dissipation with heat pumps.
So, there you have it: "all you have to do" is deploy a few hectares of radiators in space, combined with heat pumps that can dissipate gigawatts of thermal load with no maintenance at all over a lifetime of decades.
This seems like the sort of "not technically impossible" problem that can attract a large amount of VC funding, as VCs buy lottery tickets that the problem can be solved.
You have to find trillions of dollars of future launches to justify current valuations.
> They also claim that they can "dramatically increase" heat dissipation with heat pumps.
Right, great idea. Start with the heat where you don't want it -- in the chip -- and pump it out to where it can't go anywhere. Then you can recirculate the medium back and have slightly older heat that you can mix with the new heat! It'll be a heat party!
It's just like a terrestrial heat pump, where you pump the heat out to where you have a huge environmental sink to transfer the heat to. In space, you have something like a hundred thousand hydrogen atoms per cubic meter to take up the heat. A HUNDRED THOUSAND! That's a bigly number, it must work out. We can always make those atoms go really, really fast!
Did an AI invent this whole scheme?
The whitepaper shows a 4km x 4km solar array, which is 1600 hectares (3200 International Space Stations). Would assume the array they're proposing would be cheaper since its structurally more homogenous, but $480 trillion dollars is a whole lot of money.
Outside of that, accepting money and saying “I will simply solve the enormous problem with my idea by solving it” is not only normal, but actively encouraged and rewarded in the VC sphere. Suggesting that that way of operating is anything short of the standard that should be aspired to is actually seen as derisive and offensive on here and can get you labeled as gauche or combative.
For one, the cost they ascribe to the space bound solar array being only $2 million for 40 MW is pretty out there.
This is orders of magnitude easier than the original proposal -- and yet still nonsensical.
Starcloud’s whitepaper suggests a 4 km × 4 km radiator. For comparison, the James Web Space Telescope has a sunshield measuring 21 m × 14 m and the International Space Station measures 109 m × 73 m.
Doubling the radiator temperature would give you 16x more radiated power.
> they're looking at square kilometers of radiators to dissipate gigawatts of thermal load
Presumably they'll put them behind the 4km2 solar panels!I mean this is a ridiculous concept. We've never put anything remotely that size into space. To argue that this would be cheaper than putting something underwater or in the middle of nowhere is crazy. I'd rather deal with salt than deal with radiation.
Webb took a long time because this stuff is very, very challenging. One of its primary engineering challenges was… cooling!
"Dr. Glaser is best known as the inventor of the Solar Power Satellite concept, which he first presented in the journal Science for November 22, 1968 (“Power from the Sun: It’s Future”). In 1973 he was granted a U.S. patent on the Solar Power Satellite to supply power from space for use on the Earth."
One thing that always struck me was that you wouldn't want to be living near the "collectors". A very small angular error in beaming could result in being literally microwaved.
One of the SimCity games had this as an occasional disaster event. You had to make sure your ground collector stations weren't too close to the rest of the city or risk setting your buildings on fire.
https://www.youtube.com/watch?v=4CrTJEY8zNs
Such fun.
From my AI data centre project??
Get out of here, we’re only interested in getting rich, we don’t actually care about doing something _useful_ for people.
... could we instead beam the energy down to a data center on the sea floor?