Breadth first search would visit every node breadth first, so given infinite time, the solution would eventually be visited.
Meanwhile, say a branch had a cycle in it, even given infinite time, a naive depth first search would be trapped there, and the solution would never be found.
Or, suppose that a node has infinitely many children, but the first child has its own child. A BFS would get stuck going through all the first-level children and never reach the second-level child.
A BFS-like approach could work for completeness, but you'd have to put lower-level children on the same footing as newly-discovered higher-level children. E.g., by breaking up each list of children into additional nodes so that it has branching factor 2 (and possibly infinite depth).
The Wikipedia article is fairly useful: https://en.wikipedia.org/wiki/Countable_set
Can you point to a book or article where the definition of completeness allows infinite time? Every time I have encountered it, it is defined as finding a solution if there is one in finite time.
> No breadth first search is still complete given an infinite branching factor (i.e. a node with infinite children).
In my understanding, DFS is complete for finite depth tree and BFS is complete for finite branching trees, but neither is complete for infinitely branching infinitely deep trees.
You would need an algorithm that iteratively deepens while exploring more children to be complete for the infinite x infinite trees. This is possible, but it is a little tricky to explain.
For a proof that BFS is not complete if it must find any particular node in finite time: Imagine there is a tree starting with node A that has children B_n for all n and each B_n has a single child C_n. BFS searching for C_1 would have to explore all of B_n before it could find it so it would take infinite time before BFS would find C_1.
If we're throwing around Wikipedia articles, I'd suggest a look at https://en.wikipedia.org/wiki/Order_type. Even if your set is countable, it's possible to iterate through its elements so that some are never reached, not after any length of time.
For instance, suppose I say, "I'm going to search through all positive odd numbers in order, then I'm going to search through all positive even numbers in order." (This has order type ω⋅2.) Then I'll never ever reach the number 2, since I'll be counting through odd numbers forever.
That's why it's important to order the elements in your search strategy so that each one is reached in a finite time. (This corresponds to having order type ω, the order type of the natural numbers.)