Transcendental functions. They're called that because computing an exactly rounded result might be unfeasible for some inputs. https://en.wikipedia.org/wiki/Table-maker%27s_dilemma So standards for numerical compute punt on the issue and allow for some error in the last digit.
(The main defining factor is if they're an IEEE 754 §5 operation or not, but IEEE 754 isn't a freely-available standard.)
There was a paper last year on binary64 pow (https://inria.hal.science/hal-04159652/document) which suggests that they have a correctly-rounded pow implementation, but I don't have enough technical knowledge to assess the validity of the claim.
[1] https://inria.hal.science/inria-00072594/document
> There was a paper last year on binary64 pow (https://inria.hal.science/hal-04159652/document) which suggests that they have a correctly-rounded pow implementation, but I don't have enough technical knowledge to assess the validity of the claim.
Thank you for the pointer. These were written by usual folks you'd expect from such papers (e.g. Paul Zimmermann) so I believe they did achieve significant improvement. Unfortunately it is still not complete, the paper notes that the third and final phase may still fail but is unknown whether it indeed occurs or not. So we will have to wait...