This is false. "Safety" and "Liveness" are terms used by the PL field to describe precise properties of programs and they have been used this way for like 50 years (https://en.wikipedia.org/wiki/Safety_and_liveness_properties). A "safety" property describes a guarantee that a program will never reach some form of unwanted state. A "liveness" property describes a guarantee that a program will eventually reach some form of wanted state. These terms would be described very early in a PL course.
In the context of Rust, there are a number of safety properties that Rust guarantees (modulo unsafe, FFI UB, etc.), but that set of safety properties is specific to Rust and not universal. For example, Java has a different set of safety properties, e.g. its memory model gives stronger guarantees than Rust’s.
Therefore, the meaning of “language X is safe” is entirely dependent on the specific language, and can only be understood by explicitly specifying its safety properties.
Like “memory safety”?
Almost all discussion about Rust is in comparison to C and C++, by far the dominant languages for developing native applications. C and C++ are famously neither type-safe nor memory-safe and it becomes a pretty easy shorthand in discussions of Rust for "safety" to refer to these properties.