It's even worse on things like car dashboards: some warning lights on dashboards need to be ASIL-D conformant, which is quite strict. However, developing the whole dashboard software stack to that standard is too expensive. So the common solution these days is to have a safe, ASIL-D compliant compositor and a small renderer for the warning lights section of the display while the rendering for all the flashy graphics runs in an isolated VM on standard software with lower safety requirements. It's all done on the same CPU and GPU.
Let's not be too pedantic. You, as an experienced medical device engineer, probably knew what I meant was that they would never use Linux in the critical parts of a medical device as the OP had originally argued. Any device would definitely do all of it's functionality without the part with Linux on it.
The OP was still a major strawman, regardless of my arguments, because the Linux kernel will never be in the critical path of a medical device without a TON of work to harden it from errors and such. Just the fact that Linus' stance is as said would mean that it's not an appropriate kernel for a medical device, because they should always fail with an error and stop under unknown conditions rather than just doing some random crap.