(a) the structure of every protein (what DeepMind is doing here)
(b) how different protein structures interact (i.e. protein complexes - DeepMind is working on this but not there yet)
Then we could use those two building blocks to design new proteins (drugs) that do what we want. If we solve those two problems with very high accuracy, we can also reduce the time it takes to go from starting a drug discovery programme to approved medicine.
Obtaining all protein structures and determining how they interact is a key step towards making biology more predictable. Previously, solving the structure of a protein was very time consuming. As a result, we didn’t know the structure for a majority of proteins. Now that it’s much faster, downstream research can move faster.
Caveat: we should remember that these are all computational predictions. AlphaFold’s predictions can be wrong and protein structures will still need to be validated. Having said that, lots of validation has already occurred and confidence in the predictions grows with every new iteration of AlphaFold.
Apart from X-ray crystallography there are other methods for structure determination such as nuclear magnetic resonance (NMR) or cryo-electron microscopy (cryo-EM). The latter has seen a dramatic improvement in resolution over the last decade.
Another idea is these may come into play for anti-verification, so if you are drug screening against a known structure. You could potentially use these more flawed structures of proteins you don't want to target but may be similar, and try to reduce the drug's efficacy at binding them. Or something to that effect. All of that is fun ideas that are currently being explored in that space but we'll see where it takes us.
Drugs are usually not proteins, but instead small molecules that are designed to help or interfere with the operation of proteins instead.
Every couple years there is a massive competition called CASP where labs submit previously unresolved protein structures derived from experimental EM, x-ray crystallography, or NMR studies and other labs attempt to predict these structures using their software. AlphaFold2 absolutely destroyed the other labs in the main contest (regular monomeric targets, predominantly globular) for structure resolution two years ago, in CASP 14.
https://predictioncenter.org/casp14/zscores_final.cgi
The latest contest, CASP15, is currently underway and expected to end this year. As with all ML, the usual caveats apply to the models Google generated -- the dangers of overfitting to existing structures, artifacts based on the way the problem was modelled, etc