It's completely irrelevant because the point he's making is that LLMs operate differently from human languages as evidenced by the fact that they can learn language structures that humans cannot learn. Put another way, I'm sure you can point out an infinitude of similarities between human language faculty and LLMs but it's the critical differences that make LLMs not useful models of human language ability.
> When you feed them “impossible” languages (e.g., mirror-order or random-agreement versions of English), perplexity explodes and structure heads disappear—evidence that the models do encode natural-language constraints.
This is confused. You can pre-train an LLM on English or an impossible language and they do equally well. On the other hand humans can't do that, ergo LLMs aren't useful models of human language because they lack this critical distinctive feature.
The reason the Moro languages are of interest are that they are computationally simple so it's a puzzle why humans can't learn them (and no surprise that LLMs can). The authors of the paper miss the point and show irrelevant things like there exist complicated languages that both humans and LLMs can't learn.
It's impressive that LLMs can learn languages that humans cannot. In what frame is this a negative?
Separately, "impossible language" is a pretty clear misnomer. If an LLM can learn it, it's possible.
That's what "impossible language" means in this context, not something like computationally impossible or random.
As I said in another comment this whole dispute would be put to bed if people understood that they don't care about what humans do (and that Chomsky does).
It's completely unremarkable that humans are unable to learn certain languages, and soon it will be unremarkable when humans have no cognitive edge over machines.
Response: Science? "Ancient Linguistics" would more accurately describe Chomsky's field of study and its utility
If science is irrelevant to you it's you who should have recognized this before spouting off.