Unless you can always program A(x) in less than x steps on a Turing machine?
The explanation was that: "Because if a Turing machine could compute a sequence that grows faster than Busy Beaver, then it could use that sequence to obtain the D‘s—the beaver dams." But these goals seem different to me.
Another sequence you cannot compute is "foo(x)" - the number of integers lower than x for which algorithm "bar(x)" doesn't halt. It's impossible to compute if "bar(x)" doesn't always halt. But the sequence cannot grow faster than "x" itself.
Also, it doesn't matter that you cannot compute them if every TM of a given size can be analysed and proven halting. It doesn't have to be computed (as in, automatically checked).
The fact you can compute A(x) would only be an issue if you could compute A(x) with a machine of size smaller than x.
Assume by contradiction that there is a computable function f that grows faster than the busy beaver problem. We can then make a Turing Machine that takes input n, calculates f(n), and then constructs and simulates every n-state Turing Machine for f(n) steps. Since f grows faster than the number of steps the most productive TM would take, any simulated machine in not in the halt state would never halt, and we could select the busiest beaver out of the remaining Turing Machines. We have constructed a TM that computes the busy beaver problem, which is a contradiction. Thus, there can be no computable function that grows faster than the busy beaver function.