BB(BB(BB(BB(BB(11111)))))
Repeat as many BB's as you have space on your 1000 character card. You might even use math notation to define a new function where BB-(n) = [BB(BB(.......]
<---- n ----->
And then you might have: BB-(BB-(BB-(1111)))(BB-(BB-(BB-(1111)))(11111))
Or some such monstrosity.One of the most important sentences in understanding them is one that's easy to pass by in the original work: "Indeed, already the top five and six-rule contenders elude us: we can’t explain how they ‘work’ in human terms."
That is, while we humans are thinking we're all clever by defining repeated iterations of the BB ruleset itself, all of these things that we think we are being so clever with are actually very very compactly described by Turing Machine states. Meanwhile, even by BB(6) the TM is metaphorically "using" incomprehensible tricks to be larger than we'd even dream. If repeated iterations of BB'ness can be trivially described in, say, 10 states, and let's say we reserve 4 states for BB(4) to describe the number of times to iterate, our hand-constructed "clever" re-iteration of the BB procedure will be blown away by some other 10-state machine that we can't even imagine would ever terminate.
So on the one hand, yes, BB(BB(20)) is incomprehensibly larger than merely BB(20), and yet, on the other hand, in a profound way, it also doesn't matter. Busy Beaver in a sense shows us numbers that have all the practical properties of infinity, even if they are not technically infinite. In a sense BB(30) < BB(31) is obviously true, yet, ultimately, a humanly meaningless statement, since grasping either number in any sense beyond its mere definition is impossible. We might as well say that "blibble" is less than "bloo". And not merely impossible in the sense that it is impossible to even really properly grasp just how far it is to Alpha Centauri, but impossible in the sense that we are literally incapable of even constructing mathematical tools that will let us grab on to and manipulate such numbers... deeply, profoundly, computationally impossible for us to understand, not merely "mind-blowing", but impossible for us to understand in the absolute strongest sense of the term.
Similarly for trying to catch up to BB with yet more iterations of exponentiation... the procedure we humans use is shockingly, shockingly simple to describe programmatically, which means that BB automatically already encompasses practically all such tricks very early in its sequence, which means you can't defeat it that way.
Busy Beaver is metaphorically (again) much smarter than you, and it's not worth your time to try to outsmart it to make yet again bigger numbers.
This also, probably correctly, implies that attempting to adjudicate some contest in which some people write BB(BB(BB(x)))) vs some other BB-based notation is also impossible and you'd actually fail out of the contest for writing an ill-defined number, as if we can't compare the two numbers for which is larger, even in principle, it is for the purposes of this contest, ill-defined. Busy Beaver in a sense also sets the limit of what a well-defined number even can be, and is thus in some sense the natural limit of this contest by virtue of simply transcending through sheer incomprehensible size all our computationally-naive human tricks for making big numbers, or even just numbers of any size at all.
It's really a profound sequence.
I think this is really the key to your point. Part of me wonders whether this should even make the example in the essay, BB(111), invalid. If there is no way in our universe to ever know exactly what BB(111) is, can it really be considered a well-defined number? That said, I'm no mathematician, so I'm probably off-base here.
My first though reading the challenge was a series of 7^7^7^7... since the 7s would nest together nicely (unlike 9s) :P
Conversely if you want to insist on a "constructible" number then you kind of have to insist on unary notation. Maybe a computer can give you a numerical value for "11^11^11^11", but can you really consider it well-defined if you can't put that many pebbles in a row? There are a few mathematicians who take this kind of view - see http://en.wikipedia.org/wiki/Ultrafinitism - but it's very much an extreme position.
The problem arises when you say that "a programmer should be able to grind out" whether or not a TM halts or not, which you use to get around the fact that a TM cannot solve the halting problem. However, I'd question if this is a trivial exercise: while we certainly are capable of recognizing infinite loops in the code we write, I'm not certain that humans can identify arbitrary infinite loops. Obviously, whether or not we can isn't a trivially answerable question, as it comes down to whether or not our brain's neural networks can be modeled by a sufficiently large TM, and even if it cannot be modeled by a sufficiently large TM, what differences between our brains and a TM exist and why those would effectively allow us to solve the halting problem.
So I'd question whether finding the BBs is "'just' a matter of computation", because I'm not convinced that humans can solve the TM halting problem.
^Although his reasoning is that it is not valid because it is always changing, not specifically because it is unknown. Still, I assume that "Number of grains of sand in the Sahara at exactly midnight, Jan. 1 2050, on this atomic clock" would also be disallowed, even though it's possible we would somehow be able to know exactly what that number is in the future.