I’m especially curious about where the Pydantic team wants to take Monty. The minimal-interpreter approach feels like a good starting point for AI workloads, but the long tail of Python semantics is brutal. There is a trade-off between keeping the surface area small (for security and predictability) and providing sufficient language capabilities to handle non-trivial snippets that LLMs generate to do complex tasks
disclaimer: i work at E2B, opinions my own
But to be clear, we're not even targeting the same "computer use" use case I think e2b, daytona, cloudflare, modal, fly.io, deno, google, aws are going after - we're aiming to support programmatic tool calling with minimal latency and complexity - it's a fundamentally different offering.
Chill, e2b has its use case, at least for now.