1. Getting things to space is incredibly expensive
2. Ingress/egress are almost always a major bottleneck - how is bandwidth cheaper in space?
3. Chips must be “Rad-hard” - that is do more error correcting from ionizing radiation - there were entire teams at NASA dedicated to special hardware for this.
4. Gravity and atmospheric pressure actually do wonders for easy cooling. Heat is not dissipated in space like we are all used to and you must burn additional energy trying to move the heat generated away from source.
5. Energy production will be cheaper from earth due to mass manufacturing of necessary components in energy systems - space energy systems need novel technology where economies of scale are lost.
Would love for someone to make the case for why it actually makes total sense, because it’s really hard to see for me!
They don't do RAD hardening on chips these days, they just accept error and use redundant CPUs.
Note that on modern hardware cosmic rays permanently disable circuits, not mere bitflips.
No, he's not. Dragon is using CotS, non rad-hardened CPUs. And it's rated to carry humans to space.
> AWST: So, NASA does not require SpaceX to use radiation-hardened computer systems on the Dragon?
John Muratore: No, as a matter of fact NASA doesn't require it on their own systems, either. I spent 30 years at NASA and in the Air Force doing this kind of work. My last job was chief engineer of the shuttle program at NASA, and before that as shuttle flight director. I managed flight programs and built the mission control center that we use there today.
On the space station, some areas are using rad-hardened parts and other parts use COTS parts. Most of the control of the space station occurs through laptop computers which are not radiation hardened.
> Q: So, these flight computers on Dragon – there are three on board, and that's for redundancy?
A: There are actually six computers. They operate in pairs, so there are three computer units, each of which have two computers checking on each other. The reason we have three is when operating in proximity of ISS, we have to always have two computer strings voting on something on critical actions. We have three so we can tolerate a failure and still have two voting on each other. And that has nothing to do with radiation, that has to do with ensuring that we're safe when we're flying our vehicle in the proximity of the space station.
I went into the lab earlier today, and we have 18 different processing units with computers in them. We have three main computers, but 18 units that have a computer of some kind, and all of them are triple computers – everything is three processors. So we have like 54 processors on the spacecraft. It's a highly distributed design and very fault-tolerant and very robust.
[1] - https://aviationweek.com/dragons-radiation-tolerant-design
... hooked up to the ISS, with humans in attendance to fix anything that goes wrong... not doing very much.
It's akin to the difference between a boat moored up in a port, and an autonomous drone in the middle of the Pacific. Aside from that, satellites have to maneuver in orbit (to stay in the correct orbit, and increasingly to avoid other satellites). Hefting around additional kgs of shielding makes that more difficult, and costly in terms of propellant, which is very important for the lifetime of a satellite.