They always hope the speed increase makes up for the lower quality, but it never does. The quadratic time seems inherent to the problem.
Indeed, there are lower bounds showing that sub n^2 algorithms can't work: https://arxiv.org/pdf/2302.13214
This paper at least aspires to reproduce 'true' attention, which distinguishes it from many of the others. TBD if its successful in that.
Convolving two arrays can be done perfectly accurately in O(n log n), despite every element being combined with every other element.
Or consider the even more basic sum of products a[i] * b[j] for all possible i, j:
total = 0
for i in range(len(a)):
for j in range(len(b)):
total += a[i] * b[j]
This can be computed in linear time as sum(a) * sum(b).Your logic that 'the result contains terms of all pairs, therefore the algorithm must be quadratic' simply doesn't hold.