Space is a vacuum. i.e. The lack-of-a-thing that makes a thermos great at keeping your drink hot. A satellite is, if nothing else, a fantastic thermos. A data center in space would necessarily rely completely on cooling by radiation, unlike a terrestrial data center that can make use of convection and conduction. You can't just pipe heat out into the atmosphere or build a heat exchanger. You can't exchange heat with vacuum. You can only radiate heat into it.
Heat is going to limit the compute that can be done in a satellite data centre and radiative cooling solutions are going to massively increase weight. It makes far more sense to build data centers in the arctic.
Musk is up to something here. This could be another hyperloop (i.e. A distracting promise meant to sabotage competition). It could be a legal dodge. It could be a power grab. What it will not be is a useful source of computing power. Anyone who takes this venture seriously is probably going to be burned.
What about gamma rays? there is a reason why "space hardened" microcontrollers are MIPS chips from the 90s on massive dies with a huge wedge of metal on it. You can't just take a normal 4micron die and yeet it into space and have done with it.
Then there is the downlink. If you want low latency, then you need to be in Low earth orbit. That means that you'll spend >40% of your time in darkness. So not only do you need to have a MAssive heat exchanger and liquid cooling loop, which is space rated, you need to have ?20mwhr of battery as well (also cooled/heated because swinging +/- 140 C every 90 minutes is not going to make them happy)
Then there is data consistency, is this inference only? or are we expecting to have a mesh network that can do whole "datacentre" cache coherence? because I have bad news for you if you're going to try that.
Its just complete and total bollocks.
utter utter bollocks.
Obviously you use the backside of the massive area of PV you need, for an equally massive area for HOPG radiator films with condensor coils (because obviously you use heatpumps for cooling, not pure liquid).
Consider the obvious ways you'd actually do it, not the most naive ways.
The GPU pods obviously won't weigh the same as a terrestrial rack. Space based solar arrays obviously don't weigh the same as your hail and storm resistant panels on your roof (see ROSA, but there might be another 10x weight reduction if using flexible solar in tension from rotation). Noone cares about a couple 100 ms extra for first token.
Solar wind and drag are in my opinion the biggest issue. Problem : it's a giant surface catching drag and solar wind. Solution : it's a giant solar sail. Controlling the angle of PV for useful thrust, that's never really been done for a satellite.