zlacker

[return to "Data centers in space makes no sense"]
1. beloch+kK[view] [source] 2026-02-03 23:33:46
>>ajyoon+(OP)
I would not assume cooling has been worked out.

Space is a vacuum. i.e. The lack-of-a-thing that makes a thermos great at keeping your drink hot. A satellite is, if nothing else, a fantastic thermos. A data center in space would necessarily rely completely on cooling by radiation, unlike a terrestrial data center that can make use of convection and conduction. You can't just pipe heat out into the atmosphere or build a heat exchanger. You can't exchange heat with vacuum. You can only radiate heat into it.

Heat is going to limit the compute that can be done in a satellite data centre and radiative cooling solutions are going to massively increase weight. It makes far more sense to build data centers in the arctic.

Musk is up to something here. This could be another hyperloop (i.e. A distracting promise meant to sabotage competition). It could be a legal dodge. It could be a power grab. What it will not be is a useful source of computing power. Anyone who takes this venture seriously is probably going to be burned.

◧◩
2. dev_l1+Mw2[view] [source] 2026-02-04 13:56:27
>>beloch+kK
The Stefan-Boltzmann Law tells us that radiative power scales to the fourth power of temperature (T^4). While terrestrial cooling is largely linear and dependent on ambient air/water temperature (the "wet-bulb" limit), a radiator in space is dumping heat into a 3-Kelvin sink. That thermal gradient is massive.
◧◩◪
3. Dasist+2B2[view] [source] 2026-02-04 14:18:59
>>dev_l1+Mw2
This is misleading: - A radiator only “sees” 3 K if it’s perfectly shielded from the Sun, Earth albedo, and Earth IR. In Earth orbit you can easily get hundreds of W/m^2 incident; without sunshields the net rejectable heat is greatly reduced. - You have a "massive" advantage only if the radiator is allowed to run very hot: At 300–310 K with \epsilon \approx 0.9: about 400–500 W/m^2. Effective "radiative heat transfer coefficient" at 300 K: h_rad \approx 4\epsilon\sigma T^3 \approx 5-6 W/m^2K. That's orders of magnitude lower than forced convection in air (\approx 50–500 W/m^2K) or the water side of a heat exchanger (>=1000 W/m^2K).
[go to top]