Space is a vacuum. i.e. The lack-of-a-thing that makes a thermos great at keeping your drink hot. A satellite is, if nothing else, a fantastic thermos. A data center in space would necessarily rely completely on cooling by radiation, unlike a terrestrial data center that can make use of convection and conduction. You can't just pipe heat out into the atmosphere or build a heat exchanger. You can't exchange heat with vacuum. You can only radiate heat into it.
Heat is going to limit the compute that can be done in a satellite data centre and radiative cooling solutions are going to massively increase weight. It makes far more sense to build data centers in the arctic.
Musk is up to something here. This could be another hyperloop (i.e. A distracting promise meant to sabotage competition). It could be a legal dodge. It could be a power grab. What it will not be is a useful source of computing power. Anyone who takes this venture seriously is probably going to be burned.
It probably increases Elon's share of the combined entity.
It delivers on a promise to investors that he will make money for them, even as the underlying businesses are lousy.
A Starlink satellite uses about 5K Watts of solar power. It needs to dissipate around that amount (+ the sun power on it) just to operate. There are around 10K starlink satellites already in orbit, which means that the Starlink constellation is already effectively equivalent to a 50 Mega-watt (in a rough, back of the envelope feasibility way).
Isn't 50MW already by itself equivalent to the energy consumption of a typical hyperscaler cloud?
Why is starlink possible and other computations are not? Starlink is also already financially viable. Wouldn't it also become significantly cheaper as we improve our orbital launch vehicles?
1. The capital costs are higher, you have to expend tons of energy to put it into orbit
2. The maintenance costs are higher because the lifetime of satellites is pretty low
3. Refurbishment is next to impossible
4. Networking is harder, either you are ok with a relatively small datacenter or you have to deal with radio or laser links between satellites
For starlink this isn't as important. Starlink provides something that can't really be provided any other way, but even so just the US uses 176 terawatt-hours of power for data centers so starlink is 1/400th of that assuming your estimate is accurate (and I'm not sure it is, does it account for the night cycle?)
Or you float them on the ocean circumnavigating the earth?
Or we put the datacenters on giant Zeppelins orbiting above the clouds?
If we are doing fantasy tech solutions to space problems, why not for a million other more sensible options?
What that does have to do with anything? If you want to solar-power them, you still are subject to terrestrial effects. You can't just shut off a data center at night.
> Or we put the datacenters on giant Zeppelins orbiting above the clouds?
They'd have to fly at 50,000+ ft to be clear of clouds, I doubt you can lift heavy payloads this high using bouyancy given the low air density. High risk to people on the ground in case of failure because no re-entry.
> If we are doing fantasy tech solutions to space problems, why not for a million other more sensible options?
How is this a fantasy? With Starlink operational, this hardly seems a mere 'fantasy'.