- In the EU, the ASCEND study conducted in 2024 by Thales Alenia Space found that data center in space could be possible by 2035. Data center in space could contribute to the EU's Net-Zero goal by 2050 [1]
- heat dissipation could be greatly enhanced with micro droplet technology, and thereby reducing the required radiator surface area by the factor of 5-10
- data center in space could provide advantages for processing space data, instead of sending them all to earth. - the Lonestar project proved that data storage and edge processing in space (moon, cislunar) is possible.
- A hybrid architecture could dramatically change the heat budget: + optical connections reduce heat + photonic chips (Lightmatter and Q.ANT) + processing-in-memory might reduce energy requirement by 10-50 times
I think the hybrid architecture could provide decisive advantages, especially when designed for AI inference workloads,
This is only relevant to the compute productivity (how much useful work it can produce), but it's irrelevant to the heat dissipation problem. The energy income is fundamentally limited by the solar facing area (x 1361 W/m^2). So the energy output cannot exceed it, regardless useful signals or just waste heat. Even if we just put a stone there, the equilibrium temperature wouldn't be any better or worse.