This ambiguity is documented at least back to 1984, by IBM, the pre-eminent computer company of the time.
In 1972 IBM started selling the IBM 3333 magnetic disk drive. This product catalog [0] from 1979 shows them marketing the corresponding disks as "100 million bytes" or "200 million bytes" (3336 mdl 1 and 3336 mdl 11, respectively). By 1984, those same disks were marketed in the "IBM Input/Output Device Summary"[1] (which was intended for a customer audience) as "100MB" and "200MB"
0: (PDF page 281) "IBM 3330 DISK STORAGE" http://electronicsandbooks.com/edt/manual/Hardware/I/IBM%20w...
1: (PDF page 38, labeled page 2-7, Fig 2-4) http://electronicsandbooks.com/edt/manual/Hardware/I/IBM%20w...
Also, hats off to http://electronicsandbooks.com/ for keeping such incredible records available for the internet to browse.
-------
Edit: The below is wrong. Older experience has corrected me - there has always been ambiguity (perhaps bifurcated between CPU/OS and storage domains). "And that with such great confidence!", indeed.
-------
The article presents wishful thinking. The wish is for "kilobyte" to have one meaning. For the majority of its existence, it had only one meaning - 1024 bytes. Now it has an ambiguous meaning. People wish for an unambiguous term for 1000 bits, however that word does not exist. People also might wish that others use kibibyte any time they reference 1024 bytes, but that is also wishful thinking.
The author's wishful thinking is falsely presented as fact.
I think kilobyte was the wrong word to ever use for 1024 bytes, and I'd love to go back in time to tell computer scientists that they needed to invent a new prefix to mean "1,024" / "2^10" of something, which kilo- never meant before kilobit / kilobyte were invented. Kibi- is fine, the phonetics sound slightly silly to native English speakers, but the 'bi' indicates binary and I think that's reasonable.
I'm just not going to fool myself with wishful thinking. If, in arrogance or self-righteousness, one simply assumes that every time they see "kilobyte" it means 1,000 bytes - then they will make many, many failures. We will always have to take care to verify whether "kilobyte" means 1,000 or 1,024 bytes before implementing something which relies on that for correctness.
> The author's wishful thinking is falsely presented as fact.
There's good reason why the meanings of SI prefixes aren't set by convention or by common usage or by immemorial tradition, but by the SI. We had several thousand years of setting weights and measures by local and trade tradition and it was a nightmare, which is how we ended up with the SI. It's not a good show for computing to come along and immediately recreate the long and short ton.
Adding to your point, it is human nature to create industry- or context-specific units and refuse to play with others.
In the non-metric world, I see examples like: Paper publishing uses points (1/72 inch), metal machinists use thousands of an inch, woodworkers use feet and inches and binary fractions, land surveyors use decimal feet (unusual!), waist circumference is in inches, body height is in feet and inches, but you buy fabric by the yard, airplane altitudes are in hundreds to tens of thousands of feet instead of decimal miles. Crude oil is traded in barrels but gasoline is dispensed in gallons. Everyone thinks their usage of units and numbers is intuitive and optimal, and everyone refuses to change.
In the metric(ish) world, I still see many tensions. The micron is a common alternate name for the micrometre, yet why don't we have a millin or nanon or picon? The solution is to eliminate the micron. I've seen the angstrom (0.1 nm) in spectroscopy and in the discussion of CPU transistor sizes, yet it diverts attention away from the picometre. The bar (100 kPa) is popular in talking about things like tire pressure because it's nearly 1 atmosphere. The mmHg is a unit of pressure that sounds metric but is not; the correct unit is pascal. No one in astronomy uses mega/giga/tera/peta/etc.-metres; instead they use AU and parsec and (thousand, million, billion) light-years. Particle physics use eV/keV/MeV instead of some units around the picojoule.
Having a grab bag of units and domains that don't talk to each other is indeed the natural state of things. To put your foot down and say no, your industry does not get its own special snowflake unit, stop that nonsense and use the standardized unit - that takes real effort to achieve.