zlacker

[return to "OrangePi 6 Plus Review"]
1. eleven+O7[view] [source] 2025-12-27 14:14:12
>>ekianj+(OP)
The review shows ARM64 software support is still painful vs x86. For $200 for the 16gb model, this is the price point where you could just get an Intel N150 mini PC in the same form factor. And those usually come with cases. They also tend to pull 5-8w at idle, while this is 15w. Cool if you really want ARM64, but at this end of the performance spectrum, why not stick with the x86 stack where everything just works a lot easier?
◧◩
2. Youden+td[view] [source] 2025-12-27 15:04:21
>>eleven+O7
From the article: "[...] the Linux support for various parts of the boards, not being upstreamed and mainlined, is very likely to be stuck on an older version. This is usually what causes headaches down the road [...]".

The problem isn't support for the ARM architecture in general, it's the support for this particular board.

Other boards like the Raspberry Pi and many boards based on Rockchip SoCs have most of the necessary support mainlined, so the experience is quite painless. Many are starting to get support for UEFI as well.

◧◩◪
3. ndrisc+qi[view] [source] 2025-12-27 15:46:24
>>Youden+td
My uninformed normie view of the ecosystem suggests that it's the support for almost every particular board, and that's exactly the issue. For some reason, ARM devices always have some custom OS or Android and can't run off-the-shelf Linux. Meanwhile you can just buy an x86/amd64 device and assume it will just work. I presume there is some fundamental reason why ARM devices are so bad about this? Like they're just missing standardization and every device requires some custom firmware to be loaded by the OS that's inevitably always packaged in a hacky way?
◧◩◪◨
4. bri3d+hi1[view] [source] 2025-12-27 23:15:45
>>ndrisc+qi
It's the shape of the delivered artifact that's driven the way things are implemented in the ecosystem, not a really fundamental architecture difference.

The shape of historically delivered ARM artifacts has been embedded devices. Embedded devices usually work once in one specific configuration. The shape of historically delivered ARM Linux products is a Thing that boots and runs. This only requires a kernel that works on one single device in one single configuration.

The shape of historically delivered x86 artifacts is socketed processors that plug into a variety of motherboards with a variety of downstream hardware, and the shape of historically delivered x86 operating systems is floppies, CDs, or install media that is expected to work on any x86 machine.

As ARM moves out of this historical system, things improve; I believe that for example you could run the same aarch64 Linux kernel on Pi 2B 1.2+, 3, and 4, with either UEFI/ACPI or just different DTBs for each device, because the drivers for these devices are mainline-quality and capable of discovering the environment in which they are running at runtime.

People commonly point to ACPI+UEFI vs DeviceTree as causes for these differences, but I think this is wrong; these are symptoms, not causes, and are broadly Not The Problem. With properly constructed drivers you could load a different DTB for each device and achieve similar results as ACPI; it's just different formats (and different levels of complexity + dynamic behavior). In some ways ACPI is "superior" since it enables runtime dynamism (ie - power events or even keystrokes can trigger behavior changes) without driver knowledge, but in some ways it's worse since it's a complex bytecode system and usually full of weird bugs and edge cases, versus DTB where what you see is what you get.

[go to top]