It is the first model to get partial-credit on an LLM image test I have. Which is counting the legs of a dog. Specifically, a dog with 5 legs. This is a wild test, because LLMs get really pushy and insistent that the dog only has 4 legs.
In fact GPT5 wrote an edge detection script to see where "golden dog feet" met "bright green grass" to prove to me that there were only 4 legs. The script found 5, and GPT-5 then said it was a bug, and adjusted the script sensitivity so it only located 4, lol.
Anyway, Gemini 3, while still being unable to count the legs first try, did identify "male anatomy" (it's own words) also visible in the picture. The 5th leg was approximately where you could expect a well endowed dog to have a "5th leg".
That aside though, I still wouldn't call it particularly impressive.
As a note, Meta's image slicer correctly highlighted all 5 legs without a hitch. Maybe not quite a transformer, but interesting that it could properly interpret "dog leg" and ID them. Also the dog with many legs (I have a few of them) all had there extra legs added by nano-banana.
I'm always curious if these tests have comprehensive prompts that inform the model about what's going on properly, or if they're designed to "trick" the LLM in a very human-cognition-centric flavor of "trick".
Does the test instruction prompt tell it that it should be interpreting the image very, very literally, and that it should attempt to discard all previous knowledge of the subject before making its assessment of the question, etc.? Does it tell the model that some inputs may be designed to "trick" its reasoning, and to watch out for that specifically?
More specifically, what is a successful outcome here to you? Simply returning the answer "5" with no other info, or back-and-forth, or anything else in the output context? What is your idea of the LLMs internal world-model in this case? Do you want it to successfully infer that you are being deceitful? Should it respond directly to the deceit? Should it take the deceit in "good faith" and operate as if that's the new reality? Something in between? To me, all of this is very unclear in terms of LLM prompting, it feels like there's tons of very human-like subtext involved and you're trying to show that LLMs can't handle subtext/deceit and then generalizing that to say LLMs have low cognitive abilities in a general sense? This doesn't seem like particularly useful or productive analysis to me, so I'm curious what the goal of these "tests" are for the people who write/perform/post them?
LLMs don‘t have cognition. LLMs are a statistical inference machines which predict a given output given some input. There are no mental processes, no sensory information, and certainly no knowledge involved, only statistical reasoning, inference, interpolation, and prediction. Comparing the human mind to an LLM model is like comparing a rubber tire to a calf muscle, or a hydraulic system to the gravitational force. They belong in different categories and cannot be responsibly compared.
When I see these tests, I presume they are made to demonstrate the limitation of this technology. This is both relevant and important that consumers know they are not dealing with magic, and are not being sold a lie (in a healthy economy a consumer protection agency should ideally do that for us; but here we are).
Categories of _what_, exactly? What word would you use to describe this "kind" of which LLMs and humans are two very different "categories"? I simply chose the word "cognition". I think you're getting hung up on semantics here a bit more than is reasonable.
Precisely. At least apples and oranges are both fruits, and it makes sense to compare e.g. the sugar contents of each. But an LLM model and the human brain are as different as the wind and the sunshine. You cannot measure the windspeed of the sun and you cannot measure the UV index of the wind.
Your choice of the words here was rather poor in my opinion. Statistical models do not have cognition any more than the wind has ultra-violet radiation. Cognition is a well studied phenomena, there is a whole field of science dedicated to cognition. And while cognition of animals are often modeled using statistics, statistical models in them selves do not have cognition.
A much better word here would by “abilities”. That is that these tests demonstrate the different abilities of LLM models compared to human abilities (or even the abilities of traditional [specialized] models which often do pass these kinds of tests).
Semantics often do matter, and what worries me is that these statistical models are being anthropomorphized way more then is healthy. People treat them like the crew of the Enterprise treated Data, when in fact they should be treated like the ship‘s computer. And I think this because of a deliberate (and malicious/consumer hostile) marketing campaign from the AI companies.
What I am trying to say is that the intrinsic properties of the brain and an LLM are completely different, even though the extrinsic properties might appear the same. This is also true of the wind and the sunshine. It is not unreasonable to (though I would disagree) that “cognition” is almost the definition of the sum of all intrinsic properties of the human mind (I would disagree only on the merit of animal and plant cognition existing and the former [probably] having similar intrinsic properties as human cognition).
If you can‘t tell I find issues when terms are taken from psychology and applied to statistics. The terminology should flow in the other direction, from statistics and into psychology.
So my background is that I have done both undergraduate in both psychology and in statistics (though I dropped out of statistics after 2 years) and this is the first time I hear about artificial cognition, so I don‘t think this term is popular, and a short internet search seems to confirm that suspicion.
Out of context I would guess artificial cognition would mean something similar to cognition as artificial neural networks do to neural networks, that is, these are models that simulate the mechanisms of human cognition and recreate some stimulus → response loop. However my internet search revealed (thankfully) that this is not how researches are using this (IMO misguided) term.
https://psycnet.apa.org/record/2020-84784-001
https://arxiv.org/abs/1706.08606
What the researchers mean by the term (at least the ones I found in my short internet search) is not actual machine cognition, nor claims that machines have cognition, but rather an approach of research which takes experimental designs from cognitive psychology and applies them to learning models.