It is the first model to get partial-credit on an LLM image test I have. Which is counting the legs of a dog. Specifically, a dog with 5 legs. This is a wild test, because LLMs get really pushy and insistent that the dog only has 4 legs.
In fact GPT5 wrote an edge detection script to see where "golden dog feet" met "bright green grass" to prove to me that there were only 4 legs. The script found 5, and GPT-5 then said it was a bug, and adjusted the script sensitivity so it only located 4, lol.
Anyway, Gemini 3, while still being unable to count the legs first try, did identify "male anatomy" (it's own words) also visible in the picture. The 5th leg was approximately where you could expect a well endowed dog to have a "5th leg".
That aside though, I still wouldn't call it particularly impressive.
As a note, Meta's image slicer correctly highlighted all 5 legs without a hitch. Maybe not quite a transformer, but interesting that it could properly interpret "dog leg" and ID them. Also the dog with many legs (I have a few of them) all had there extra legs added by nano-banana.
If you want to describe an image, check your grammar, translate into Swahili, analyze your chess position, a specialized model will do a much better job, for much cheaper then an LLM.
Lets say you are right and these things will be optimized, and in, say, 5 years, most models from the big players will be able do things like reading small text in an obscure image, draw a picture of a glass of wine filled to the brim, draw a path through a maze, count the legs of a 5 footed dog, etc. And in doing so finished their last venture capital subsidies (bringing the actual cost of these to their customers). Why would people use LLMs for these when a traditional specialized model can do it for much cheaper?