It is the first model to get partial-credit on an LLM image test I have. Which is counting the legs of a dog. Specifically, a dog with 5 legs. This is a wild test, because LLMs get really pushy and insistent that the dog only has 4 legs.
In fact GPT5 wrote an edge detection script to see where "golden dog feet" met "bright green grass" to prove to me that there were only 4 legs. The script found 5, and GPT-5 then said it was a bug, and adjusted the script sensitivity so it only located 4, lol.
Anyway, Gemini 3, while still being unable to count the legs first try, did identify "male anatomy" (it's own words) also visible in the picture. The 5th leg was approximately where you could expect a well endowed dog to have a "5th leg".
That aside though, I still wouldn't call it particularly impressive.
As a note, Meta's image slicer correctly highlighted all 5 legs without a hitch. Maybe not quite a transformer, but interesting that it could properly interpret "dog leg" and ID them. Also the dog with many legs (I have a few of them) all had there extra legs added by nano-banana.
Try generating:
- A spider missing one leg
- A 9-pointed star
- A 5-leaf clover
- A man with six fingers on his left hand and four fingers on his right
You'll be lucky to get a 25% success rate.
The last one is particularly ironic given how much work went into FIXING the old SD 1.5 issues with hand anatomy... to the point where I'm seriously considering incorporating it as a new test scenario on GenAI Showdown.