zlacker

[return to "Exploring a space-based, scalable AI infrastructure system design"]
1. ceejay+a7[view] [source] 2025-11-04 17:42:25
>>meetpa+(OP)
> In the right orbit, a solar panel can be up to 8 times more productive than on earth, and produce power nearly continuously, reducing the need for batteries.

Sure. Now do cooling. That this isn't in the "key challenges" section makes this pretty non-serious.

A surprising amount of the ISS is dedicated to this, and they aren't running a GPU farm. https://en.wikipedia.org/wiki/External_Active_Thermal_Contro...

◧◩
2. boutel+z8[view] [source] 2025-11-04 17:49:56
>>ceejay+a7
This is absolutely the first thing I looked for too. They just barely mentioned thermal management at all. Maybe they know something I don't, but I know from past posts here that many people share this concern. Very strange that they didn't go there, or maybe they didn't go there because they have no solution and this is just greenwashing for the costs of AI.
◧◩◪
3. TeMPOr+yt[view] [source] 2025-11-04 19:42:05
>>boutel+z8
No, they just literally assumed their design fits withing the operational envelope of a conventional satellite - the paper (which no one read, apparently) literally says their system design "assumes a relatively conventional, discrete compute payload, satellite bus, thermal radiator, and solar panel designs".

This is not the 1960s. Today, if you have an idea for doing something in space, you can start by scoping out the details of your mission plan and payload requirements, and then see if you can solve it with parts off a catalogue.

(Of course there's million issues that will crop up when actually designing and building the spacecraft, but that's too low level for this kind of paper, which just notes that (the authors believe) the platform requirements fall close enough to existing systems to not be worth belaboring.)

◧◩◪◨
4. LargoL+NP1[view] [source] 2025-11-05 07:26:35
>>TeMPOr+yt
Since this isn't the 1960s, and it's Google with their resources, maybe they'd go for some superconducting logic based on Josephson Junctions, like RSFQ? In parts, at least?

So they wouldn't have the burden of cooling it down first, like on earth? Instead being able to rely on the cold out there, as long as it stays in the shadow, or is otherwise isolated from sources of heat? Again, with less mess to deal with, like on earth? Since it's fucking cold up there already? And depending on the ratio of superconducting logic vs. conventional CMOS or whatever, less need to cool that, because superconducting stuff emits less heat, and the remaining 'smartphony' stuff is easy to deal with?

If I had those resorces at hand, I'd try.

[go to top]