But I can't help but agree with a lot of points in this article. Go was designed by some old-school folks that maybe stuck a bit too hard to their principles, losing sight of the practical conveniences. That said, it's a _feeling_ I have, and maybe Go would be much worse if it had solved all these quirks. To be fair, I see more leniency in fixing quirks in the last few years, like at some point I didn't think we'd ever see generics, or custom iterators, etc.
The points about RAM and portability seem mostly like personal grievances though. If it was better, that would be nice, of course. But the GC in Go is very unlikely to cause issues in most programs even at very large scale, and it's not that hard to debug. And Go runs on most platforms anyone could ever wish to ship their software on.
But yeah the whole error / nil situation still bothers me. I find myself wishing for Result[Ok, Err] and Optional[T] quite often.
I'd say that it's entirely the other way around: they stuck to the practical convenience of solving the problem that they had in front of them, quickly, instead of analyzing the problem from the first principles, and solving the problem correctly (or using a solution that was Not Invented Here).
Go's filesystem API is the perfect example. You need to open files? Great, we'll create
func Open(name string) (*File, error)
function, you can open files now, done. What if the file name is not valid UTF-8, though? Who cares, hasn't happen to me in the first 5 years I used Go.It's far better to get some � when working with messy data instead of applications refusing to work and erroring out left and right.
So that means that for 99% of scenarios, the difference between char[] and a proper utf8 string is none. They have the same data representation and memory layout.
The problem comes in when people start using string like they use string in PHP. They just use it to store random bytes or other binary data.
This makes no sense with the string type. String is text, but now we don't have text. That's a problem.
We should use byte[] or something for this instead of string. That's an abuse of string. I don't think allowing strings to not be text is too constraining - that's what a string is!
We can try to shove it into objects that work on other text but this won't work in edge cases.
Like if I take text on Linux and try to write a Windows file with that text, it's broken. And vice versa.
Go let's you do the broken thing. In Rust or even using libraries in most languages, you cant. You have to specifically convert between them.
That's why I mean when I say "storing random binary data as text". Sure, Windows almost UTF16 abomination is kind of text, but not really. Its its own thing. That requires a different type of string OR converting it to a normal string.
It maybe legacy cruft downstream of poorly thought out design decisions at the system/OS level, but we're stuck with it. And a language that doesn't provide the tooling necessary to muddle through this mess safely isn't a serious platform to build on, IMHO.
There is room for languages that explicitly make the tradeoff of being easy to use (e.g. a unified string type) at the cost of not handling many real world edge cases correctly. But these should not be used for serious things like backup systems where edge cases result in lost data. Go is making the tradeoff for language simplicity, while being marketed and positioned as a serious language for writing serious programs, which it is not.