I started out very sceptical. When Claude Code landed, I got completely seduced — borderline addicted, slot machine-style — by what initially felt like a superpower. Then I actually read the code. It was shockingly bad. I swung back hard to my earlier scepticism, probably even more entrenched than before.
Then something shifted. I started experimenting. I stopped giving it orders and began using it more like a virtual rubber duck. That made a huge difference.
It’s still absolute rubbish if you just let it run wild, which is why I think “vibe coding” is basically just “vibe debt” — because it just doesn’t do what most (possibly uninformed) people think it does.
But if you treat it as a collaborator — more like an idiot savant with a massive brain but no instinct or nous — or better yet, as a mech suit [0] that needs firm control — then something interesting happens.
I’m now at a point where working with Claude Code is not just productive, it actually produces pretty good code, with the right guidance. I’ve got tests, lots of them. I’ve also developed a way of getting Claude to document intent as we go, which helps me, any future human reader, and, crucially, the model itself when revisiting old code.
What fascinates me is how negative these comments are — how many people seem closed off to the possibility that this could be a net positive for software engineers rather than some kind of doomsday.
Did Photoshop kill graphic artists? Did film kill theatre? Not really. Things changed, sure. Was it “better”? There’s no counterfactual, so who knows? But change was inevitable.
What’s clear is this tech is here now, and complaining about it feels a bit like mourning the loss of punch cards when terminals showed up.
[0]: https://matthewsinclair.com/blog/0178-why-llm-powered-progra...
Core to Ptacek's point is that everything has changed in the last 6 months. As you and I presume he agree, the use of off-the-shelf LLMs in code was kinda garbage. And I expect the skepticism he's knocking here ("stochastic parrots") was in fact accurate then.
But it did get a lot of people (and money) to rush in and start trying to make something useful. Like the stone soup story, a lot of other technology has been added to the pot, and now we're moving in the direction of something solid, a proper meal. But given the excitement and investment, it'll be at least a few years before things stabilize. Only at that point can we be sure about how much the stone really added to the soup.
Another counterfactual that we'll never know is what kinds of tooling we would have gotten if people had dumped a few billion dollars into code tool improvement without LLMs, but with, say, a lot of more conventional ML tooling. Would the tools we get be much better? Much worse? About the same but different in strengths and weaknesses? Impossible to say.
So I'm still skeptical of the hype. After all, the hype is basically the same as 6 months ago, even though now the boosters can admit the products of 6 months ago sucked. But I can believe we're in the middle of a revolution of developer tooling. Even so, I'm content to wait. We don't know the long term effects on a code base. We don't know what these tools will look like in 6 months. I'm happy to check in again then, where I fully expect to be again told: "If you were trying and failing to use an LLM for code 6 months ago †, you’re not doing what most serious LLM-assisted coders are doing." At least until then, I'm renewing my membership in the Boring Technology Club: https://boringtechnology.club/
This was actually the only point in the essay with which I disagree, and it weakens the overall argument. Even 2 years ago, before agents or reasoning models, these LLMs were extremely powerful. The catch was, you needed to figure out what worked for you.
I wrote this comment elsewhere: >>44164846 -- Upshot: It took me months to figure out what worked for me, but AI enabled me to produce innovative (probably cutting edge) work in domains I had little prior background in. Yes, the hype should trigger your suspicions, but if respectable people with no stake in selling AI like @tptacek or @kentonv in the other AI thread are saying similar things, you should probably take a closer look.
Maybe? Social proof doesn't mean much to me during a hype cycle. You could say the same thing about tulip bulbs or any other famous bubble. Lots of smart people with no stake get sucked in. People are extremely good at fooling themselves. There are a lot of extremely smart people following all of the world's major religions, for example, and they can't all be right. And whatever else is going on here, there are a lot of very talented people whose fortunes and futures depend on convincing everybody that something extraordinary is happening here.
I'm glad you have found something that works for you. But I talk with a lot of people who are totally convinced they've found something that makes a huge difference, from essential oils to functional programming. Maybe it does for them. But personally, what works for me is waiting out the hype cycle until we get to the plateau of productivity. Those months that you spent figuring out what worked are months I'd rather spend on using what I've already found to work.
Learning how to use a tool once is easy, relearning how to use a tool every six months because of the rapid pace of change is a pain.
A thing being great doesn’t mean it’s going to generate outsized levels of hype forever. Nobody gets hyped about “The Internet” anymore, because novel use cases aren’t being discovered at a rapid clip, and it has well and throughly integrated into the general milieu of society. Same with GPS, vaccines, docker containers, Rust, etc., but I mentioned the Internet first since it’s probably on a similar level of societal shift as is AI in the maximalist version of AI hype.
Once a thing becomes widespread and standardized, it becomes just another part of the world we live in, regardless of how incredible it is. It’s only exciting to be a hype man when you’ve got the weight of broad non-adoption to rail against.
Which brings me to the point I was originally trying to make, with a more well-defined set of terms: who cares if someone waits until the tooling is more widely adopted, easy to use, and somewhat standardized prior to jumping on the bandwagon? Not everyone needs to undergo the pain of being an early adopter, and if the tools become as good as everyone says they will, they will succeed on their merits, and not due to strident hype pieces.
I think some of the frustration the AI camp is dealing with right now is because y’all are the new Rust Evangelism Strike Force, just instead of “you’re a bad software engineer if you use a memory unsafe languages,” it’s “you’re a bad software engineer if you don’t use AI.”