Question: If everyone uses AI to code, how does someone become an expert capable of carefully reading and understanding code and acting as an editor to an AI?
The expert skills needed to be an editor -- reading code, understanding its implications, knowing what approaches are likely to cause problems, recognizing patterns that can be refactored, knowing where likely problems lie and how to test them, holding a complex codebase in memory and knowing where to find things -- currently come from long experience writing code.
But a novice who outsources their thinking to an LLM or an agent (or both) will never develop those skills on their own. So where will the experts come from?
I think of this because of my job as a professor; many of the homework assignments we use to develop thinking skills are now obsolete because LLMs can do them, permitting the students to pass without thinking. Perhaps there is another way to develop the skills, but I don't know what it is, and in the mean time I'm not sure how novices will learn to become experts.
I believe it's important for students to learn how to write data structures at some point. Red black trees, various heaps, etc. Students should write and understand these, even though almost nobody will ever implement one on the job.
Analogously electrical engineers learn how to use conservation laws and Ohm's law to compute various circuit properties. Professionals use simulation software for this most of the time, but learning the inner workings is important for students.
The same pattern is true of LLMs. Students should learn how to write code, but soon the code will write itself and professionals will be prompting models instead. In 5-10 years none of this will matter though because the models will do nearly everything.