Like sure, I can ask claude to give me the barebones of a web service that does some simple task. Or a webpage with some information on it.
But any time I've tried to get AI services to help with bugfixing/feature development on a large, complex, potentially multi-language codebase, it's useless.
And those tasks are the ones that actually take up the majority of my time. On the occasion that I'm spinning a new thing up quickly, I don't really need an AI to do it for me -- I mean, that's the easy part!
Is there something I'm missing? Am I just not using it right? I keep seeing people talk about how addictive it is, how the productivity boost is insane, how all their code is now written by AI and then audited, and I just don't see how that's possible outside of really simple rote programming.
Almost everybody doing serious work with LLMs is using an agent, which means that the LLM is authoring files, linting them, compiling them, and iterating when it spots problems.
There's more to using LLMs well than this, but this is the high-order bit.
I have this workflow where I trigger a bunch of prompts in the morning, lunch and at the end of the day. At those same times I give it feedback. The async nature really means I can have it work on things I can’t be bothered with myself.
It keeps _me_ from context switching into agent manager mode. I do the same thing for doing code reviews for human teammates as well.
Like most of the code agents it works best with tight testable loops. But it has a concept of short vs long tests and will give you plans as nd confidence values to help you refine your prompt if you want.
I tend to just let it go. If it gets to a 75% done spot that isn’t worth more back and forth I grab the pr and finish it off.