Like sure, I can ask claude to give me the barebones of a web service that does some simple task. Or a webpage with some information on it.
But any time I've tried to get AI services to help with bugfixing/feature development on a large, complex, potentially multi-language codebase, it's useless.
And those tasks are the ones that actually take up the majority of my time. On the occasion that I'm spinning a new thing up quickly, I don't really need an AI to do it for me -- I mean, that's the easy part!
Is there something I'm missing? Am I just not using it right? I keep seeing people talk about how addictive it is, how the productivity boost is insane, how all their code is now written by AI and then audited, and I just don't see how that's possible outside of really simple rote programming.
I've successfully been able to test out new libraries and do explorations quickly with AI coding tools and I can then take those working examples and fix them up manually to bring them up to my coding standards. I can also extend the lifespan of coding tools by doing cleanup cycles where I manually clean up the code since they work better with cleaner encapsulation, and you can use them to work on one scoped component at a time.
I've found that they're great to test out ideas and learn more quickly, but my goal is to better understand the technologies I'm prototyping myself, I'm not trying to get it to output production quality code.
I do think there's a future where LLMs can operate in a well architected production codebase with proper type safe compilation, linting, testing, encapsulation, code review, etc, but with a very tight leash because without oversight and quality control and correction it'll quickly degrade your codebase.