For about 1000 input tokens (and resulting 1000 output tokens), to my surprise, GPT-3.5 turbo was 100x cheaper than Llama 2.
Llama 7B wasn't up to the task fyi, producing very poor translations.
I believe that OpenAI priced GPT-3.5 aggressively cheap in order to make it a non-brainer to rely on them rather than relying on other vendors (even open source models).
I'm curious to see if others have gotten different results?
You're better off using models specialized in translation; General purpose LLMs are more useful when fine-tuning on specific tasks (some form of extraction, summarization, generative tasks, etc.), or for general chatbot-like uses.
For foreign language corrections ("correct this German sentence and give a reason for the correction"), GPT-3.5 doesn't quite have the horsepower so I use GPT-4