A lot of modern userspace code, including Rust code in the standard library, thinks that invariant failures (AKA "programmer errors") should cause some sort of assertion failure or crash (Rust or Go `panic`, C/C++ `assert`, etc). In the kernel, claims Linus, failing loudly is worse than trying to keep going because failing would also kill the failure reporting mechanisms.
He advocates for a sort of soft-failure, where the code tells you you're entering unknown territory and then goes ahead and does whatever. Maybe it crashes later, maybe it returns the wrong answer, who knows, the only thing it won't do is halt the kernel at the point the error was detected.
Think of the following Rust API for an array, which needs to be able to handle the case of a user reading an index outside its bounds:
struct Array<T> { ... }
impl<T> Array<T> {
fn len(&self) -> usize;
// if idx >= len, panic
fn get_or_panic(&self, idx: usize) -> T;
// if idx >= len, return None
fn get_or_none(&self, idx: usize) -> Option<T>;
// if idx >= len, print a stack trace and return
// who knows what
unsafe fn get_or_undefined(&self, idx: usize) -> T;
}
The first two are safe by the Rust definition, because they can't cause memory-unsafe behavior. The second two are safe by the Linus/Linux definition, because they won't cause a kernel panic. If you have to choose between #1 and #3, Linus is putting his foot down and saying that the kernel's answer is #3."If you want to allocate memory, and you don't want to care about what context you are in, or whether you are holding spinlocks etc, then you damn well shouldn't be doing kernel programming. Not in C, and not in Rust.
It really is that simple. Contexts like this ("I am in a critical region, I must not do memory allocation or use sleeping locks") is fundamental to kernel programming. It has nothing to do with the language, and everything to do with the problem space."