zlacker

[return to "“Rust is safe” is not some kind of absolute guarantee of code safety"]
1. jmilli+Fb[view] [source] 2022-10-02 15:34:06
>>rvz+(OP)
As usual HN comments react to the headline, without reading the content.

A lot of modern userspace code, including Rust code in the standard library, thinks that invariant failures (AKA "programmer errors") should cause some sort of assertion failure or crash (Rust or Go `panic`, C/C++ `assert`, etc). In the kernel, claims Linus, failing loudly is worse than trying to keep going because failing would also kill the failure reporting mechanisms.

He advocates for a sort of soft-failure, where the code tells you you're entering unknown territory and then goes ahead and does whatever. Maybe it crashes later, maybe it returns the wrong answer, who knows, the only thing it won't do is halt the kernel at the point the error was detected.

Think of the following Rust API for an array, which needs to be able to handle the case of a user reading an index outside its bounds:

  struct Array<T> { ... }
  impl<T> Array<T> {
    fn len(&self) -> usize;

    // if idx >= len, panic
    fn get_or_panic(&self, idx: usize) -> T;

    // if idx >= len, return None
    fn get_or_none(&self, idx: usize) -> Option<T>;

    // if idx >= len, print a stack trace and return
    // who knows what
    unsafe fn get_or_undefined(&self, idx: usize) -> T;
  }
The first two are safe by the Rust definition, because they can't cause memory-unsafe behavior. The second two are safe by the Linus/Linux definition, because they won't cause a kernel panic. If you have to choose between #1 and #3, Linus is putting his foot down and saying that the kernel's answer is #3.
◧◩
2. layer8+0d[view] [source] 2022-10-02 15:41:34
>>jmilli+Fb
Please correct me if I’m wrong, but Rust also has no built-in mechanism to statically determine “this code won’t ever panic”, and thus with regards to Linux kernel requirements isn’t safer in that aspect than C. To the contrary, Rust is arguably less safe in that aspect than C, due to the general Rust practice of panicking upon unexpected conditions.
◧◩◪
3. dcsomm+0g[view] [source] 2022-10-02 15:59:00
>>layer8+0d
> ... the general Rust practice of panicking upon unexpected conditions

What makes you say this? From the sample I've seen, Rust programs are far more diligent about handling errors (not panicking: either returning error or handling it explicitly) than C or Go programs due to the nature of wrapped types like Option<T> and Result<T, E>. You can't escape handling the error, and panicking potential is very easy to see and lint against with clippy in the code.

◧◩◪◨
4. layer8+Ng[view] [source] 2022-10-02 16:03:15
>>dcsomm+0g
I’m referring to the fact that ubiquitous functions like unwrap() panic if the programmer has made an error. Guarding against such panics is outside of the scope of Rust-the-language, and has to be handled through external means. There are linters for C as well.
◧◩◪◨⬒
5. stjohn+tO[view] [source] 2022-10-02 19:13:59
>>layer8+Ng
That's where linters and code reviews come in, you will never 100% prevent stupid coding, that's where review either automated and/or other coders and coding standards come in.
[go to top]