zlacker

[return to "“Rust is safe” is not some kind of absolute guarantee of code safety"]
1. jmilli+Fb[view] [source] 2022-10-02 15:34:06
>>rvz+(OP)
As usual HN comments react to the headline, without reading the content.

A lot of modern userspace code, including Rust code in the standard library, thinks that invariant failures (AKA "programmer errors") should cause some sort of assertion failure or crash (Rust or Go `panic`, C/C++ `assert`, etc). In the kernel, claims Linus, failing loudly is worse than trying to keep going because failing would also kill the failure reporting mechanisms.

He advocates for a sort of soft-failure, where the code tells you you're entering unknown territory and then goes ahead and does whatever. Maybe it crashes later, maybe it returns the wrong answer, who knows, the only thing it won't do is halt the kernel at the point the error was detected.

Think of the following Rust API for an array, which needs to be able to handle the case of a user reading an index outside its bounds:

  struct Array<T> { ... }
  impl<T> Array<T> {
    fn len(&self) -> usize;

    // if idx >= len, panic
    fn get_or_panic(&self, idx: usize) -> T;

    // if idx >= len, return None
    fn get_or_none(&self, idx: usize) -> Option<T>;

    // if idx >= len, print a stack trace and return
    // who knows what
    unsafe fn get_or_undefined(&self, idx: usize) -> T;
  }
The first two are safe by the Rust definition, because they can't cause memory-unsafe behavior. The second two are safe by the Linus/Linux definition, because they won't cause a kernel panic. If you have to choose between #1 and #3, Linus is putting his foot down and saying that the kernel's answer is #3.
◧◩
2. layer8+0d[view] [source] 2022-10-02 15:41:34
>>jmilli+Fb
Please correct me if I’m wrong, but Rust also has no built-in mechanism to statically determine “this code won’t ever panic”, and thus with regards to Linux kernel requirements isn’t safer in that aspect than C. To the contrary, Rust is arguably less safe in that aspect than C, due to the general Rust practice of panicking upon unexpected conditions.
◧◩◪
3. gerane+if[view] [source] 2022-10-02 15:54:35
>>layer8+0d
We cannot ensure that an arbitrary program halts by statically analyzing it. And it doesn’t have anything to do with the language of choice.

https://en.m.wikipedia.org/wiki/Halting_problem

◧◩◪◨
4. roywig+lj[view] [source] 2022-10-02 16:16:33
>>gerane+if
You can prove that a machine can't ever write "1" to the tape if you just look at the state machine and see that none of the rules write a 1 to the tape. Since no rules ever write 1, no possible execution could.

Working out whether it will write 1 to the tape in general is undecidable, but in certain cases (you've just banned states that write 1) it's trivial.

If all of the state transitions are valid (a transition to a non-existing state is a halt) then the machine can't get into a state that will transition into a halt, so it can't halt. That's a small fraction of all the machines that won't halt, but it's easy to tell when you have one of this kind by looking at the state machine.

[go to top]