Some of the reasoning:
>Preliminary assessment also suggests Imagen encodes several social biases and stereotypes, including an overall bias towards generating images of people with lighter skin tones and a tendency for images portraying different professions to align with Western gender stereotypes. Finally, even when we focus generations away from people, our preliminary analysis indicates Imagen encodes a range of social and cultural biases when generating images of activities, events, and objects. We aim to make progress on several of these open challenges and limitations in future work.
Really sad that breakthrough technologies are going to be withheld due to our inability to cope with the results.
We certainly don't want to perpetuate harmful stereotypes. But is it a flaw that the model encodes the world as it really is, statistically, rather than as we would like it to be? By this I mean that there are more light-skinned people in the west than dark, and there are more women nurses than men, which is reflected in the model's training data. If the model only generates images of female nurses, is that a problem to fix, or a correct assessment of the data?
If some particular demographic shows up in 51% of the data but 100% of the model's output shows that one demographic, that does seem like a statistics problem that the model could correct by just picking less likely "next token" predictions.
Also, is it wrong to have localized models? For example, should a model for use in Japan conform to the demographics of Japan, or to that of the world?
For a one-shot generative algorithm you must accept the artist’s biases.
“hey artist, draw me a nurse.”
“Hmm okay, do you want it a guy or girl?”
“Don’t ask me, just draw what I’m saying.”
- Ok, I'll draw you what an average nurse looks like.
- Wait, it's a woman! She wears a nurse blouse and she has a nurse cap.
- Is it bad ?
- No.
- Ok then what's the problem, you asked for something that looked like a nurse but didn't specify anything else ?